Detail View

Blind deblurring using coupled convolutional sparse coding regularisation for noisy-blurry images
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author An, T. H. ko
dc.contributor.author Choi, D. ko
dc.contributor.author Cho, Sunghyun ko
dc.contributor.author Hong, K. S. ko
dc.contributor.author Lee, S. ko
dc.date.accessioned 2018-08-02T12:33:26Z -
dc.date.available 2018-08-02T12:33:26Z -
dc.date.created 2018-07-27 -
dc.date.issued 2018-07 -
dc.identifier.citation Electronics Letters, v.54, no.14, pp.874 - 875 -
dc.identifier.issn 0013-5194 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/9023 -
dc.description.abstract This Letter proposes a novel method to deblur a blurry image corrupted by noise. The authors estimate a noise-free version of the input blurred image and a corresponding noise-free version of the latent image without damaging the blur information, as well as the latent image and blur kernel in an alternating fashion. To this end, they first propose coupled convolutional sparse coding, which incorporates the coupled dictionary concept into convolutional sparse coding. Then they model the noise-free blurred image to share the sparse coefficients with the noise-free latent image using the coupled dictionaries. By utilising these noise-free images as priors in alternating latent image estimation and blur kernel estimation steps, they can estimate a high-quality latent image and blur kernel in the presence of noise. Experimental results demonstrate that the proposed method outperforms previous methods in handling noisy blurred images. © The Institution of Engineering and Technology 2018. -
dc.language English -
dc.publisher Institution of Engineering and Technology -
dc.subject image restoration -
dc.subject deconvolution -
dc.subject image denoising -
dc.subject high-quality latent image -
dc.subject noisy blurred images -
dc.subject blind deblurring -
dc.subject coupled convolutional sparse coding regularisation -
dc.subject noisy-blurry images -
dc.subject blurry image -
dc.subject input blurred image -
dc.subject corresponding noise-free version -
dc.subject blur information -
dc.subject coupled dictionary concept -
dc.subject noise-free blurred image -
dc.subject sparse coefficients -
dc.subject noise-free latent image -
dc.subject coupled dictionaries -
dc.subject noise-free images -
dc.subject latent image estimation -
dc.subject blur kernel estimation steps -
dc.subject DECONVOLUTION -
dc.title Blind deblurring using coupled convolutional sparse coding regularisation for noisy-blurry images -
dc.type Article -
dc.identifier.doi 10.1049/el.2018.0901 -
dc.identifier.wosid 000437171500009 -
dc.identifier.scopusid 2-s2.0-85049498786 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.identifier.bibliographicCitation An, T. H. (2018-07). Blind deblurring using coupled convolutional sparse coding regularisation for noisy-blurry images. doi: 10.1049/el.2018.0901 -
dc.description.journalClass 1 -
dc.contributor.nonIdAuthor An, T. H. -
dc.contributor.nonIdAuthor Choi, D. -
dc.contributor.nonIdAuthor Hong, K. S. -
dc.contributor.nonIdAuthor Lee, S. -
dc.identifier.citationVolume 54 -
dc.identifier.citationNumber 14 -
dc.identifier.citationStartPage 874 -
dc.identifier.citationEndPage 875 -
dc.identifier.citationTitle Electronics Letters -
dc.type.journalArticle Article -
dc.description.isOpenAccess N -
dc.contributor.affiliatedAuthor Cho, Sunghyun -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads