Detail View

De novo protein structure prediction using ultra-fast molecular dynamics simulation
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Cheung, J. Ngaam -
dc.contributor.author Yu, Wookyung -
dc.date.accessioned 2018-12-05T07:56:00Z -
dc.date.available 2018-12-05T07:56:00Z -
dc.date.created 2018-11-23 -
dc.date.issued 2018-11 -
dc.identifier.citation PLoS ONE, v.13, no.11 -
dc.identifier.issn 1932-6203 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/9470 -
dc.description.abstract Modern genomics sequencing techniques have provided a massive amount of protein sequences, but experimental endeavor in determining protein structures is largely lagging far behind the vast and unexplored sequences. Apparently, computational biology is playing a more important role in protein structure prediction than ever. Here, we present a system of de novo predictor, termed NiDelta, building on a deep convolutional neural network and statistical potential enabling molecular dynamics simulation for modeling protein tertiary structure. Combining with evolutionary-based residue-contacts, the presented predictor can predict the tertiary structures of a number of target proteins with remarkable accuracy. The proposed approach is demonstrated by calculations on a set of eighteen large proteins from different fold classes. The results show that the ultra-fast molecular dynamics simulation could dramatically reduce the gap between the sequence and its structure at atom level, and it could also present high efficiency in protein structure determination if sparse experimental data is available. -
dc.language English -
dc.publisher Public Library of Science -
dc.title De novo protein structure prediction using ultra-fast molecular dynamics simulation -
dc.type Article -
dc.identifier.doi 10.1371/journal.pone.0205819 -
dc.identifier.wosid 000450775300006 -
dc.identifier.scopusid 2-s2.0-85056803101 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.identifier.bibliographicCitation Cheung, J. Ngaam. (2018-11). De novo protein structure prediction using ultra-fast molecular dynamics simulation. doi: 10.1371/journal.pone.0205819 -
dc.description.journalClass 1 -
dc.citation.publicationname PLoS ONE -
dc.contributor.nonIdAuthor Cheung, J. Ngaam -
dc.identifier.citationVolume 13 -
dc.identifier.citationNumber 11 -
dc.identifier.citationTitle PLoS ONE -
dc.type.journalArticle Article -
dc.description.isOpenAccess Y -
dc.subject.keywordPlus CONTACT PREDICTIONS -
dc.subject.keywordPlus SEQUENCE -
dc.subject.keywordPlus COEVOLUTION -
dc.contributor.affiliatedAuthor Cheung, J. Ngaam -
dc.contributor.affiliatedAuthor Yu, Wookyung -
Show Simple Item Record

File Downloads

공유

qrcode
공유하기

Related Researcher

유우경
Yu, Wookyung유우경

Department of Brain Sciences

read more

Total Views & Downloads