Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Bong-seok -
dc.contributor.author Jin, Youngseok -
dc.contributor.author Kim, Sangdong -
dc.contributor.author Lee, Jonghun -
dc.date.accessioned 2019-03-15T01:56:00Z -
dc.date.available 2019-03-15T01:56:00Z -
dc.date.created 2019-01-31 -
dc.date.issued 2019-02 -
dc.identifier.issn 1424-8220 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/9611 -
dc.description.abstract This paper proposes a low-complexity frequency-modulated continuous wave (FMCW) surveillance radar algorithm using random dual chirps in order to overcome the blind-speed problem and reduce the computational complexity. In surveillance radar algorithm, the most widely used moving target indicator (MTI) algorithm is proposed to effectively remove clutter. However, the MTI algorithm has a so-called ‘blind-speed problem’ that cannot detect a target of a specific velocity. In this paper, we try to solve the blind-speed problem of MTI algorithm by randomly selecting two beat signals selected for MTI for each frame. To further reduce the redundant complexity, the proposed algorithm first performs one-dimensional fast Fourier transform (FFT) for range detection and performs multidimensional FFT only when it is determined that a target exists at each frame. The simulation results show that despite low complexity, the proposed algorithm detects moving targets well by avoiding the problem of blind speed. Furthermore, the effectiveness of the proposed algorithm was verified by performing an experiment using the FMCW radar system in a real environment. © 2019 by the authors. -
dc.language English -
dc.publisher Multidisciplinary Digital Publishing Institute (MDPI) -
dc.title A Low-Complexity FMCW Surveillance Radar Algorithm Using Two Random Beat Signals -
dc.type Article -
dc.identifier.doi 10.3390/s19030608 -
dc.identifier.scopusid 2-s2.0-85060953953 -
dc.identifier.bibliographicCitation Sensors, v.19, no.3 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor FMCW radar -
dc.subject.keywordAuthor surveillance -
dc.subject.keywordAuthor low complexity -
dc.subject.keywordAuthor Doppler -
dc.citation.number 3 -
dc.citation.title Sensors -
dc.citation.volume 19 -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE