Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Choi, Jaecheol -
dc.contributor.author Kim, Jeonghun -
dc.contributor.author Wagner, Pawel -
dc.contributor.author Gambhir, Sanjeev -
dc.contributor.author Jalili, Rouhollah -
dc.contributor.author Byun, Seoungwoo -
dc.contributor.author Sayyar, Sepidar -
dc.contributor.author Lee, Yong Min -
dc.contributor.author MacFarlane, Douglas R. -
dc.contributor.author Wallace, Gordon G. -
dc.contributor.author Officer, David L. -
dc.date.accessioned 2019-03-18T00:47:46Z -
dc.date.available 2019-03-18T00:47:46Z -
dc.date.created 2019-03-15 -
dc.date.issued 2019-02 -
dc.identifier.citation Energy & Environmental Science, v.12, no.2, pp.747 - 755 -
dc.identifier.issn 1754-5692 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/9635 -
dc.description.abstract Although electrochemical CO 2 reduction is one of the most promising ways to convert atmospheric CO 2 into value-added chemicals, there are still numerous limitations to overcome to achieve highly efficient CO 2 conversion performance. Herein, we report for the first time the development and use of a three-dimensional iron porphyrin-based graphene hydrogel (FePGH) as an electrocatalyst for extremely efficient robust CO 2 reduction to CO. Electrocatalytic CO 2 conversion was performed in aqueous medium with FePGH, which has a highly porous and conductive 3D graphene structure, resulting in high catalytic activity for CO production with ∼96.2% faradaic efficiency at a very low overpotential of 280 mV. Furthermore, FePGH showed considerable catalytic durability maintaining a consistent CO yield (96.4% FE) over 20 h electrolysis at the same overpotential, corresponding to the highest cathodic energy efficiency yet observed of 79.7% compared to other state-of-the-art immobilised metal complex electrocatalysts. This approach to fabricating a 3D graphene-based hydrogel electrocatalyst should provide an exciting new avenue for the development of other kinds of molecular electrocatalysts. © 2019 The Royal Society of Chemistry. -
dc.language English -
dc.publisher Royal Society of Chemistry -
dc.title Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel -
dc.type Article -
dc.identifier.doi 10.1039/c8ee03403f -
dc.identifier.wosid 000459741700023 -
dc.identifier.scopusid 2-s2.0-85061914651 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.description.journalClass 1 -
dc.citation.publicationname Energy & Environmental Science -
dc.contributor.nonIdAuthor Choi, Jaecheol -
dc.contributor.nonIdAuthor Kim, Jeonghun -
dc.contributor.nonIdAuthor Wagner, Pawel -
dc.contributor.nonIdAuthor Gambhir, Sanjeev -
dc.contributor.nonIdAuthor Jalili, Rouhollah -
dc.contributor.nonIdAuthor Byun, Seoungwoo -
dc.contributor.nonIdAuthor Sayyar, Sepidar -
dc.contributor.nonIdAuthor MacFarlane, Douglas R. -
dc.contributor.nonIdAuthor Wallace, Gordon G. -
dc.contributor.nonIdAuthor Officer, David L. -
dc.identifier.citationVolume 12 -
dc.identifier.citationNumber 2 -
dc.identifier.citationStartPage 747 -
dc.identifier.citationEndPage 755 -
dc.identifier.citationTitle Energy & Environmental Science -
dc.type.journalArticle Article -
dc.description.isOpenAccess N -
dc.subject.keywordPlus CO2-TO-CO CONVERSION -
dc.subject.keywordPlus GRAPHENE -
dc.subject.keywordPlus IMMOBILIZATION -
dc.subject.keywordPlus DISPERSIONS -
dc.subject.keywordPlus PORPHYRINS -
dc.subject.keywordPlus CATALYSIS -
dc.subject.keywordPlus NITROGEN -
dc.subject.keywordPlus WATER -
dc.contributor.affiliatedAuthor Choi, Jaecheol -
dc.contributor.affiliatedAuthor Kim, Jeonghun -
dc.contributor.affiliatedAuthor Wagner, Pawel -
dc.contributor.affiliatedAuthor Gambhir, Sanjeev -
dc.contributor.affiliatedAuthor Jalili, Rouhollah -
dc.contributor.affiliatedAuthor Byun, Seoungwoo -
dc.contributor.affiliatedAuthor Sayyar, Sepidar -
dc.contributor.affiliatedAuthor Lee, Yong Min -
dc.contributor.affiliatedAuthor MacFarlane, Douglas R. -
dc.contributor.affiliatedAuthor Wallace, Gordon G. -
dc.contributor.affiliatedAuthor Officer, David L. -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Battery Materials & Systems LAB 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE