Cited time in webofscience Cited time in scopus

Molecular Logic of Spinocerebellar Tract Neuron Diversity and Connectivity

Title
Molecular Logic of Spinocerebellar Tract Neuron Diversity and Connectivity
Author(s)
Baek, MyunginMenon, VilasJessell, Thomas M.Hantman, Adam W.Dasen, Jeremy S.
DGIST Authors
Baek, Myungin
Issued Date
2019-05
Type
Article
Article Type
Article
Keywords
DIFFERENTIAL EXPRESSION ANALYSISCLARKES COLUMNREACHING MOVEMENTSMOTOR-NEURONSPROPRIOCEPTIONMUSCLERATSPECIFICITYINPUTSIMPAIRMENTS
ISSN
2211-1247
Abstract
Coordinated motor behaviors depend on feedback communication between peripheral sensory systems and central circuits in the brain and spinal cord. Relay of muscle- and tendon-derived sensory information to the CNS is facilitated by functionally and anatomically diverse groups of spinocerebellar tract neurons (SCTNs), but the molecular logic by which SCTN diversity and connectivity is achieved is poorly understood. We used single-cell RNA sequencing and genetic manipulations to define the mechanisms governing the molecular profile and organization of SCTN subtypes. We found that SCTNs relaying proprioceptive sensory information from limb and axial muscles are generated through segmentally restricted actions of specific Hox genes. Loss of Hox function disrupts SCTN-subtype-specific transcriptional programs, leading to defects in the connections between proprioceptive sensory neurons, SCTNs, and the cerebellum. These results indicate that Hox-dependent genetic programs play essential roles in the assembly of neural circuits necessary for communication between the brain and spinal cord. © 2019 The Author(s)Baek et al. show that Hox-transcription-factor-dependent programs govern the specification and connectivity of spinal interneurons that relay muscle-derived sensory information to the cerebellum. These findings shed light on the development of neural circuits required for proprioception—the perception of body position. © 2019 The Author(s)
URI
http://hdl.handle.net/20.500.11750/9913
DOI
10.1016/j.celrep.2019.04.113
Publisher
Elsevier B.V.
Related Researcher
Files in This Item:
000469216500010.pdf

000469216500010.pdf

기타 데이터 / 8.94 MB / Adobe PDF download
Appears in Collections:
Department of Brain Sciences Locomotor NeuroCircuit Lab 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE