Communities & Collections
Researchers & Labs
Titles
DGIST
LIBRARY
DGIST R&D
Detail View
Division of Nanotechnology
1. Journal Articles
Lateral WSe 2 p–n Junction Device Electrically Controlled by a Single-Gate Electrode
Kwak, Do-Hyun
;
Jeong, Min-Hye
;
Ra, Hyun-Soo
;
Lee, A-Young
;
Lee, Jong-Soo
Division of Nanotechnology
1. Journal Articles
Department of Energy Science and Engineering
MNEDL(Multifunctional Nanomaterials & Energy Devices Lab)
1. Journal Articles
Citations
WEB OF SCIENCE
Citations
SCOPUS
Metadata Downloads
XML
Excel
Title
Lateral WSe 2 p–n Junction Device Electrically Controlled by a Single-Gate Electrode
Issued Date
2019-05
Citation
Kwak, Do-Hyun. (2019-05). Lateral WSe 2 p–n Junction Device Electrically Controlled by a Single-Gate Electrode. Advanced Optical Materials, 7(10), 1900051. doi: 10.1002/adom.201900051
Type
Article
Author Keywords
inverter devices
;
lateral p–n diodes
;
photovoltaic effect
;
tungsten diselenide
;
WSe 2
Keywords
Semiconductor diodes
;
Photovoltaic effects
;
Semiconductor doping
;
Transition metals
;
Tungsten compounds
;
Heterojunction structures
;
Hexagonal boron nitride (h-BN)
;
inverter devices
;
Optoelectronic applications
;
Power conversion efficiencies
;
Transition metal dichalcogenides
;
Tungsten diselenide
;
WSe2
;
Selenium compounds
;
Boron nitride
;
Electric inverters
;
Electric rectifiers
;
Electrodes
;
Electrostatic devices
;
Gate dielectrics
;
Heterojunctions
;
III-V semiconductors
;
Light absorption
;
Optoelectronic devices
ISSN
2195-1071
Abstract
Semiconductor p–n junctions are building blocks for optoelectronic devices. Recently, p–n junction devices based on 2D transition metal dichalcogenides (TMDCs) have been demonstrated in optoelectronic applications due to their thin thickness, flexibility, high carrier mobility, and high light-absorption properties. To fabricate 2D semiconductor p–n junction devices, various methods are demonstrated, such as heterojunction structures, chemical doping, and electrostatic doping. In this work, lateral both p–n and n–p junctions in WSe 2 devices, electrically controlled by using only a single-gate electrode, are first reported. It is demonstrated that the single-gated WSe 2 p–n and n–p diodes form an internal built-in electrical field, showing strong diode-like current rectifying behavior and photovoltaic effect under the illumination. The resultant device exhibits a high current rectification ratio up to ≈10 6 and a power conversion efficiency of 0.1% under AM 1.5 illumination. A logical inverter based on the lateral and in-plane contacted WSe 2 device with a hexagonal boron nitride (h-BN) gate dielectric is also presented. The electrode architecture engineering based on a single TMDC will be useful for applications that are more complicated such as p–n junction optoelectronic devices and inverters. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
URI
http://hdl.handle.net/20.500.11750/9997
DOI
10.1002/adom.201900051
Publisher
Wiley
Show Full Item Record
File Downloads
There are no files associated with this item.
공유
공유하기
Related Researcher
Kwak, Do-Hyun
곽도현
Division of Nanotechnology
read more
Total Views & Downloads