WEB OF SCIENCE
SCOPUS
We propose a time-effective framework for accelerated cyclic aging analysis of lithium-ion batteries. The proposed framework involves the coupling of a physico-chemical capacity-fade model that considers the cyclic aging mechanisms of the LiMn2O4/graphite cell, with a physics-based porous-composite electrode model to predict cycling performance at different temperatures. A one-dimensional simple empirical life model is then developed from the coupled physico-chemical capacity-fade model and the physics-based porous-composite electrode model predictions. An accelerated cyclic aging analysis based on the principle of time-temperature superposition is performed using the developed one-dimensional simple life empirical model. The proposed framework is used to predict the maximum number of cycles and the highest temperature required for accelerated cyclic aging analysis of LiMn2O4/graphite cells. The efficacy of the proposed framework is validated with experimental cycle-performance data obtained from LiMn2O4/graphite coin cells at 25 and 60 °C. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
더보기