Cited time in webofscience Cited time in scopus

Fabrication and Characterization of Composite Membranes for All Vanadium Redox Flow Battery

Title
Fabrication and Characterization of Composite Membranes for All Vanadium Redox Flow Battery
Author(s)
Syed Imdadul Hossain
DGIST Authors
Son, ByungrakHossain, Syed ImdadulShanmugam, Sangaraju
Advisor
상가라쥬 샨무감
Co-Advisor(s)
Byungrak Son
Issued Date
2019
Awarded Date
2019-08
Type
Thesis
Description
Vanadium redox flow battery (VRFB), composite membrane, Nafion, vanadium ion crossover, ion selectivity, PDDA, PSS
Abstract
화학 안정성; 열 안정성이 입증되었다. 전반적으로, 이 논문은 VRFB를 위한 비용 효율적이고 안정적인 분리막의 쉬운 합성 방법을 제시한다..우수한 VRFB 성능, 탁월한 전기 화학적 특성 및 개발된 분리막의 향상된 내구성은 VRFB 응용 분야에서 유망한 후보로 고려될 수 있다. 이 복합막의 주요 특징은 연료 전지, 분자 분리 및 리튬 이온 전지 재료와 같은 다른 응용 분야에서도 탐구 될 수 있다. 또한, 제조 된 나노 물질은 단일 분자를 단일 입자로 분석하여 에너지 기술로 바이오 센싱 역할 또한 기대된다.; thermal stability further prove the durability of proposed membranes. Overall, this thesis paper reports facile synthesis route, cost effective and stable membranes for VRFB. The excellent VRFB performance, outstanding electrochemical properties, and improved durability of fabricated membranes would be considered as a promising candidate for VRFB applications. The key features of this composite membrane could be explored in other applications as well, such as fuel cell, molecular separation, and lithium-ion batteries materials. Moreover, the fabricated nanomaterials might be used to analyse single molecules to single particles for energy technology to biosensing.|나피온 대체 가능한 블록공중합체 sulfonated poly(arylene ether ketone) (SPAEK)에 Ce2Zr2O7이 도입된 SPAEK/ Ce2Zr2O7 복합막과 얇은 나피온 네오디뮴 지르코늄 산화물 나노튜브 (Nd2Zr2O7) 나피온 (Nafion-NdZr) 복합막을 제조했다. 모든 바나듐 산화 환원 유동 배터리 (VRFB) 성능을 위해 polycation poly (diallyldimethylammonium chloride) 및 polyanion poly (sodium styrene sulfonate) (PSS)을 이용해 Nafion-NdZr 복합막을 더 개선하였다. SPAEK/Ce2Zr2O7은441 시간 동안 VRFB를 작동하였을 때, 기존의SPAEK 전해질막 (172 시간)과 및 NRE-212 전해질 막 (42 시간)에 비해 낮은 자체 방전율을 보였다.반면에 Nafion-NdZr(1%) 복합막과 Nafion-NdZr(1%)/[P-S]2 복합막은 무기물 뿐만 아니라 레이어 코팅이 이루어지지 않은 순수한 Nafion 과 Nafion/[P-S]2 막보다 높은 이온 선택성과 낮은 바나듐 이온 투과성을 보였다. Nafion-NdZr(1%)/[P-S]2 복합막의 이온 선택도는 recast Nafion, Nafion/[P-S]2 막, Nafion-NdZr보다 6.9 배, 3.5 배, 2.3 배 높은 것으로 나타났다. 결과적으로 Nafion-NdZr(1%) 복합막과 Nafion-NdZr(1%)/[P-S]2 복합막으로 VRFB의 성능이 recast Nafion 및 Nafion/[P-S]2 막의 성능보다 뛰어났습니다. VRFB작동 아래, NdZr(1%)/[P-S]2은531.7시간동안 작동되었으며, Nafion-NdZr (1%)은 293.2 시간, Recast Nafion / [PS] 2는 124.1 시간, 그리고 Nafion 막은 32.7 시간 작동이 가능하였다. Nafion-NdZr (1 %) / [PS] 2와 Nafion-NdZr (1%) 막으로 구성된 VRFB 단일 셀은 200 회의 충 방전 사이클 동안 각각 80.1 %와 73.4 %의 용량 유지율을 보여 주었지만, SPAEK / Ce2Zr2O7, Nafion-NdZr 복합 막 및 NdZr(1%)/[P-S]2막은40 mA cm-2 전류 밀도에서 100 싸이클에 걸쳐 41.5 % 유지됨을SEM, XRD, FTIR 및 AFM 분석을 통해 조사 하였다. VRFB 테스트 전후, 각각Nafion-NdZr (1%)과 Nafion-NdZr (1%) / [P-S] 2의 정량 분석을 EDX로 측정 하였다. 또한, Nafion-NdZr (1%)과 Nafion-NdZr (1%) / [P-S] 2의 XPS 분석을 통해 [P-S] 층의 존재를 밝혔다. 이 연구를 통해 개발된 분리막은 더 향상된 수명, 우수한 산화 안정성; chemical; Alternative sulfonated poly(arylene ether ketone) (SPAEK)-cerium zirconium oxide nanotube (Ce2Zr2O7NT) composite (SPAEK/Ce2Zr2O7) membrane, and thin Nafion-Neodymium zirconium oxide nanotube (Nd2Zr2O7) composite (Nafion-NdZr) membranes have been fabricated. and further modification was done for Nafion-NdZr composite membrane by polycation poly (diallyldimethylammonium chloride) (PDDA) and polyanion poly (sodium styrene sulfonate) (PSS) for all vanadium redox flow batteries (VRFBs) performance. VRFB operated with SPAEK/Ce2Zr2O7 (441 h) showed low self-discharge rate than pristine SPAEK (172 h) and NRE-212 (42 h) membrane, respectively. On the other hand, Nafion-NdZr composite membrane and Nafion-NdZr(1%)/[P-S]2 composite layer membrane showed higher ion selectivity and lower vanadium ion permeability than recast Nafion and Nafion/[P-S]2 layer membranes. The ion selectivity of Nafion-NdZr(1%)/[P-S]2 composite layer membrane was found to be 6.9, 3.5, and 2.3 times higher than Recast Nafion, recast Nafion/[P-S]2 layer membrane, and Nafion-NdZr(1%) composite membrane. As a result, VRFB functionated with Nafion-NdZr(1%) composite membrane and Nafion-NdZr(1%)/[P-S]2 composite layer membrane have surpassed the performance than operated with recast Nafion, and Nafion/[P-S]2 layer membrane. Noticeably, VRFB operated with Nafion-NdZr(1%)/[P-S]2 (513.7 h) composite layer membrane were revealed to have a lower self-discharge rate than Nafion-NdZr(1%) (293.2 h), Recast Nafion/[P-S]2 (124.1 h), and recast Nafion (32.7 h) membranes, respectively. Finally, the VRFB single cell constructed with Nafion-NdZr(1%)/[P-S]2 and Nafion-NdZr(1%) membrane remarkably showed 80.1% and 73.4% capacity retention, respectively over 200 charge-discharge cycles, whereas recast Nafion exhibited 41.5% capacity retention over 100 cycle at 40 mA cm-2 current density. The structure and morphology of Ce2Zr2O7NT, Nd2Zr2O7 nanotube, SPAEK/Ce2Zr2O7, Nafion-NdZr composite membrane, and Nafion-NdZr(1%)/[P-S]2 composite layer membrane were investigated by SEM, XRD, FTIR, and AFM analysis. The quantitative analysis of Nafion-NdZr(1%) and Nafion-NdZr(1%)/[P-S]2 (before and after VRFB) were measured by EDX. Also, the XPS analysis of Nafion-NdZr(1%) and Nafion-NdZr(1%)/[P-S]2 reveal the presence of [P-S] layer. Longer cyclic performance, excellent oxidative
Table Of Contents
I. INTRODUCTION ..……….….….…..1
1.1 Background ……………………………………………………………..……….….….…..1
1.2 The principle of VRFB and key components ……………………………..……….……….1
1.3 Shortcoming and current issues …………………………………………..……..……….…2
1.4 The development of membranes for VRFB ……………………………………..……...….3
1.4.1 Nafion modification with filler materials …………………………….………….......5
1.4.2 Nafion modification with ion exchange polymer ………………….……………...…6
1.4.3 Non ion exchange polymer modification ……………………………..………….…..6
1.4.4 Hydrocarbon polymer ..................................................................................................7
1.4.5 Anion exchange membranes …………………………………………….……….......8
1.4.6 Amphoteric ion exchange membranes ………………………………………....…….9
1.5 Objective of the thesis ……………………………………………………………….…....10

II. EXPERIMENTAL SECTTION…………....12
2.1 fabrication of SPAEK/Ce2Zr2O7 composite membrane ………………………………....12
2.1.1 Materials ……………………………………………………………………..………12
2.1.2 Preparation of Ce2Zr2O7 nanotubes…………………………………………..………12
2.1.3 Synthesis of hydrophilic oligomer ……………………………………………..….…12
2.1.4 Synthesis of hydrophobic oligomer ……………………………………………….…13
2.1.5 Synthesis of block copolymer (SPAEK) …………………………………………..…14
2.1.6 Preparation of SPAEK/Ce2Zr2O7 composite membrane …………………………..…14
2.2. Fabrication of Nafion-NdZr composite and Nafion-NdZr(1%)/[P-S]2 composite layer
membrane………………………………………………………………………….……15
2.2.1 Materials ……………………………………………………………………….……15
2.2.2 Preparation of Nd2Zr2O7 fillers ……………………………………………………..15
2.2.3 Preparation of Nafion-NdZr composite membrane……………………………..……15
2.2.4 Preparation of Nafion-NdZr (1%)/[P-S]2 composite layer membrane………………16
2.3 Characterization ……………………………………………………………………..….17
2.3.1 Field-emission scanning electron microscope (SEM) …………………………...…17
2.3.2 Field-emission transmission electron microscope (TEM) ………………….………17
2.3.3 Atomic force microscopy (AFM)……………………………………………….…..18
2.3.4 X-ray diffraction (XRD) ………………………………………………………....…18
2.3.5 Water uptake, Swelling degree and Ion exchange capacity (IEC) ………………....18
2.3.6 Proton conductivity …………………………………………………………….…..19
2.3.7 Oxidative stability ……………………………………………………………….…19
2.3.8 Thermal stability …………………………………………………………………...20
2.3.9 Measurements of VO2+ permeability and ion selectivity ……………………..……20
2.3.10 Measurements of vanadium flow battery performance ……………………….......21

III RESULTS AND DISCUSSION……………..…..23
3.1 SPAEK/Ce2Zr2O7 composite membrane …………………………………………..…..23
3.1.1 Characterization of SPAEK/Ce2Zr2O7 composite membrane ………………..…....23
3.1.2 Vanadium ion crossover and ion selectivity ………….............................................30
3.1.3 VRFB performance ……………………………………….......................................32
3.1.4 Thermal and mechanical properties ….………………………………………….…36
3.1.5 Oxidative and chemical stability……………………………………………….…..38
3.1.6 Post VRFB operation……………………………………………………………….39
3.2 Nafion-NdZr cmposite and Nafion-NdZr(1%)/[P-S]2 composite layer membranes …....41
3.2.1 Nd2Zr2O7 Pyrochlore nanotube and Membranes characterization …………….…..41
3.2.2 Physicochemical properties ………………………………………………………..50
3.2.3 Proton conductivity, VO2+ permeability, and ion selectivity ……………...….……52
3.2.4 VRFB performance ……………………………………………………….………..55
3.2.5 Thermal properties, Oxidative and chemical stability………………………………59
3.2.6 Post VRFB operation of composite layer membrane…………………….………....62

IV CONCLUSIONS …………………………………………………………………………....65
V REFERENCES ………………………………………………………………...…66
URI
http://dgist.dcollection.net/common/orgView/200000220628

http://hdl.handle.net/20.500.11750/10465
DOI
10.22677/thesis.200000220628
Degree
Master
Department
Department of Energy Science and Engineering
Publisher
DGIST
Related Researcher
  • 손병락 Son, Byungrak 에너지환경연구부
  • Research Interests 연료전지; Fuel Cell; 하이브리드 전원; Hybrid Power; 스택; Stack; 촉매; Catalyst; 연료전지시스템; Fuel Cell System;센서네트워크;Sensor Network
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE