Detail View

Deep Depth from Uncalibrated Small Motion Clip
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Im, Sunghoon -
dc.contributor.author Ha, Hyowon -
dc.contributor.author Jeon, Hae-Gon -
dc.contributor.author Lin, Stephen -
dc.contributor.author Kweon, In So -
dc.date.accessioned 2019-12-16T01:02:07Z -
dc.date.available 2019-12-16T01:02:07Z -
dc.date.created 2019-11-07 -
dc.date.issued 2021-04 -
dc.identifier.issn 0162-8828 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/10972 -
dc.description.abstract We propose a novel approach to infer a high-quality depth map from a set of images with small viewpoint variations. In general, techniques for depth estimation from small motion consist of camera pose estimation and dense reconstruction. In contrast to prior approaches that recover scene geometry and camera motions using pre-calibrated cameras, we introduce a self-calibrating bundle adjustment method tailored for small motion which enables computation of camera poses without the need for camera calibration. For dense depth reconstruction, we present a convolutional neural network called DPSNet (Deep Plane Sweep Network) whose design is inspired by best practices of traditional geometry-based approaches. Rather than directly estimating depth or optical flow correspondence from image pairs as done in many previous deep learning methods, DPSNet takes a plane sweep approach that involves building a cost volume from deep features using the plane sweep algorithm, regularizing the cost volume, and regressing the depth map from the cost volume. The cost volume is constructed using a differentiable warping process that allows for end-to-end training of the network. Through the effective incorporation of conventional multiview stereo concepts within a deep learning framework, the proposed method achieves state-of-the-art results on a variety of challenging datasets. IEEE -
dc.language English -
dc.publisher Institute of Electrical and Electronics Engineers -
dc.title Deep Depth from Uncalibrated Small Motion Clip -
dc.type Article -
dc.identifier.doi 10.1109/TPAMI.2019.2946806 -
dc.identifier.wosid 000626525300009 -
dc.identifier.scopusid 2-s2.0-85073523064 -
dc.identifier.bibliographicCitation Im, Sunghoon. (2021-04). Deep Depth from Uncalibrated Small Motion Clip. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(4), 1225–1238. doi: 10.1109/TPAMI.2019.2946806 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Cameras -
dc.subject.keywordAuthor Bundle adjustment -
dc.subject.keywordAuthor Geometry -
dc.subject.keywordAuthor Image reconstruction -
dc.subject.keywordAuthor Estimation -
dc.subject.keywordAuthor Calibration -
dc.subject.keywordAuthor 3D reconstruction -
dc.subject.keywordAuthor geometry -
dc.subject.keywordAuthor deep learning -
dc.subject.keywordAuthor structure from motion -
dc.subject.keywordAuthor bundle adjustment -
dc.subject.keywordAuthor plane sweeping algorithm -
dc.subject.keywordPlus Geometry -
dc.subject.keywordPlus Image reconstruction -
dc.subject.keywordPlus Learning algorithms -
dc.subject.keywordPlus Neural networks -
dc.subject.keywordPlus Object recognition -
dc.subject.keywordPlus Stereo image processing -
dc.subject.keywordPlus 3D reconstruction -
dc.subject.keywordPlus Bundle adjustments -
dc.subject.keywordPlus Camera pose estimation -
dc.subject.keywordPlus Convolutional neural network -
dc.subject.keywordPlus Depth reconstruction -
dc.subject.keywordPlus Learning frameworks -
dc.subject.keywordPlus Structure from motion -
dc.subject.keywordPlus Deep learning -
dc.subject.keywordPlus Plane sweeping -
dc.subject.keywordPlus Calibration -
dc.subject.keywordPlus Cameras -
dc.subject.keywordPlus Estimation -
dc.citation.endPage 1238 -
dc.citation.number 4 -
dc.citation.startPage 1225 -
dc.citation.title IEEE Transactions on Pattern Analysis and Machine Intelligence -
dc.citation.volume 43 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Computer Science; Engineering -
dc.relation.journalWebOfScienceCategory Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

임성훈
Im, Sunghoon임성훈

Department of Electrical Engineering and Computer Science

read more

Total Views & Downloads