Detail View

DC Field Value Language
dc.contributor.author Kim, Jigeon -
dc.contributor.author Koo, Bonkee -
dc.contributor.author Kim, Wook Hyun -
dc.contributor.author Choi, Jongmin -
dc.contributor.author Choi, Changsoon -
dc.contributor.author Lim, Sung Jun -
dc.contributor.author Lee, Jong-Soo -
dc.contributor.author Kim, Dae-Hwan -
dc.contributor.author Ko, Min Jae -
dc.contributor.author Kim, Younghoon -
dc.date.accessioned 2019-12-16T01:02:45Z -
dc.date.available 2019-12-16T01:02:45Z -
dc.date.created 2019-10-10 -
dc.date.issued 2019-12 -
dc.identifier.issn 2211-2855 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/10986 -
dc.description.abstract Fully inorganic CsPbI3 perovskite quantum dots (CsPbI3-PQDs) are known as the best-performing photovoltaic absorber in colloidal quantum dot solar cells. This is achieved by improving the cubic-phase-stabilization and electronic-coupling in CsPbI3-PQD solids. In conventional approaches, the hydrolysis of methyl acetate (MeOAc) resulting in acetic acid and methanol as intermediate substances plays a key role in replacing long-chain hydrocarbons with short-chain ligands, which improves charge transport in the CsPbI3-PQD solids. However, CsPbI3-PQDs suffer from lattice distortion and instability under acidic conditions including protons and polar media, leading to CsPbI3-PQD fusion and poor photovoltaic performance. Herein, we report that electronic coupling and photovoltaic performance of CsPbI3-PQD solids are improved by efficient removal of long-chain oleate ligands using a solution of sodium acetate (NaOAc) in MeOAc, which results in the direct generation of OAc ions without forming protons and methanol. NaOAc-based ligand exchange of CsPbI3-PQDs enables preservation of their nanocrystal size without fusion and minimization of surface trap states originating from metal hydroxide formation on their surfaces. Consequently, the best solar cell comprising NaOAc-treated CsPbI3-PQDs shows an improved device performance with a power conversion efficiency (PCE) of 13.3%, as compared with a lead nitrate-treated control device (12.4% PCE). © 2019 -
dc.language English -
dc.publisher Elsevier Ltd -
dc.title Alkali acetate-assisted enhanced electronic coupling in CsPbI3 perovskite quantum dot solids for improved photovoltaics -
dc.type Article -
dc.identifier.doi 10.1016/j.nanoen.2019.104130 -
dc.identifier.wosid 000503062400050 -
dc.identifier.scopusid 2-s2.0-85072693517 -
dc.identifier.bibliographicCitation Kim, Jigeon. (2019-12). Alkali acetate-assisted enhanced electronic coupling in CsPbI3 perovskite quantum dot solids for improved photovoltaics. Nano Energy, 66. doi: 10.1016/j.nanoen.2019.104130 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Sodium acetate -
dc.subject.keywordAuthor Solar cells -
dc.subject.keywordAuthor Solids-state ligand exchange -
dc.subject.keywordAuthor Colloidal quantum dots -
dc.subject.keywordAuthor CsPbI3 perovskites -
dc.subject.keywordPlus Ligand exchanges -
dc.subject.keywordPlus Long chain hydrocarbons -
dc.subject.keywordPlus Photovoltaic absorbers -
dc.subject.keywordPlus Photovoltaic performance -
dc.subject.keywordPlus Semiconductor quantum dots -
dc.subject.keywordPlus Sodium compounds -
dc.subject.keywordPlus Solar cells -
dc.subject.keywordPlus Solar power generation -
dc.subject.keywordPlus Sols -
dc.subject.keywordPlus Colloidal quantum dots -
dc.subject.keywordPlus Sodium acetate -
dc.subject.keywordPlus Lead compounds -
dc.subject.keywordPlus Ligands -
dc.subject.keywordPlus Conventional approach -
dc.subject.keywordPlus Methanol -
dc.subject.keywordPlus Nanocrystals -
dc.subject.keywordPlus Perovskite -
dc.subject.keywordPlus Perovskite solar cells -
dc.subject.keywordPlus Power conversion efficiencies -
dc.citation.title Nano Energy -
dc.citation.volume 66 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

최종민
Choi, Jongmin최종민

Department of Energy Science and Engineering

read more

Total Views & Downloads