Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Faruque, Md Hasan Al ko
dc.contributor.author Choi, Eun-Sook ko
dc.contributor.author Lee, Hyo-Ryong ko
dc.contributor.author Kim, Jung-Hee ko
dc.contributor.author Park, Sukho ko
dc.contributor.author Kim, Eunjoo ko
dc.date.accessioned 2020-03-20T10:38:11Z -
dc.date.available 2020-03-20T10:38:11Z -
dc.date.created 2020-03-03 -
dc.date.issued 2020-01 -
dc.identifier.citation Nanoscale, v.12, no.4, pp.2773 - 2786 -
dc.identifier.issn 2040-3364 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/11574 -
dc.description.abstract Until now, magnetic hyperthermia was used to remove solid tumors by targeting magnetic nanoparticles (MNPs) to tumor sites. In this study, leukemia cells in the bloodstream were directly removed by whole-body hyperthermia, using leukemia cell-specific MNPs. An epithelial cellular adhesion molecule (EpCAM) antibody was immobilized on the surface of MNPs (EpCAM-MNPs) to introduce the specificity of MNPs to leukemia cells. The viability of THP1 cells (human monocytic leukemia cells) was decreased to 40.8% of that in control samples by hyperthermia using EpCAM-MNPs. In AKR mice, an animal model of lymphoblastic leukemia, the number of leukemia cells was measured following the intravenous injection of EpCAM-MNPs and subsequent whole-body hyperthermia treatment. The result showed that the leukemia cell number was also decreased to 43.8% of that without the treatment of hyperthermia, determined by Leishman staining of leukemia cells. To support the results, simulation analysis of heat transfer from MNPs to leukemia cells was performed using COMSOL Multiphysics simulation software. The surface temperature of leukemia cells adhered to EpCAM-MNPs was predicted to be increased to 82 °C, whereas the temperature of free cells without adhered MNPs was predicted to be 38 °C. Taken together, leukemia cells were selectively removed by magnetic hyperthermia from the bloodstream, because EpCAM-modified magnetic particles were specifically attached to leukemia cell surfaces. This approach has the potential to remove metastatic cancer cells, and pathogenic bacteria and viruses floating in the bloodstream. © 2020 The Royal Society of Chemistry. -
dc.language English -
dc.publisher Royal Society of Chemistry -
dc.title Targeted removal of leukemia cells from the circulating system by whole-body magnetic hyperthermia in mice -
dc.type Article -
dc.identifier.doi 10.1039/c9nr06730b -
dc.identifier.wosid 000517839900055 -
dc.identifier.scopusid 2-s2.0-85078692937 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.description.journalClass 1 -
dc.identifier.citationVolume 12 -
dc.identifier.citationNumber 4 -
dc.identifier.citationStartPage 2773 -
dc.identifier.citationEndPage 2786 -
dc.identifier.citationTitle Nanoscale -
dc.type.journalArticle Article -
dc.description.isOpenAccess N -
dc.subject.keywordPlus IRON-OXIDE NANOPARTICLES -
dc.subject.keywordPlus ADHESION MOLECULE -
dc.subject.keywordPlus CANCER -
dc.subject.keywordPlus DELIVERY -
dc.subject.keywordPlus BLOOD -
dc.subject.keywordPlus CHEMOTHERAPY -
dc.contributor.affiliatedAuthor Kim, Jung-Hee -
dc.contributor.affiliatedAuthor Park, Sukho -
dc.contributor.affiliatedAuthor Kim, Eunjoo -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE