Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor 문대원 -
dc.contributor.author Heejin Lim -
dc.date.accessioned 2020-06-22T16:00:29Z -
dc.date.available 2020-06-22T16:00:29Z -
dc.date.issued 2020 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000282766 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/11956 -
dc.description Bio-liquid interfaces, Graphene, Mass spectrometry imaging (MSI), Time-of-flight medium energy ion scattering (ToF-MEIS), Electrical double layer (EDL) -
dc.description.abstract Detailed compositional and structural characterization of bio-liquid interfaces is required to understand interfacial phenomena in electrochemical, colloidal, and biological systems. However, nanoscale analytical techniques based on accelerated electrons and ions operate in an ultra-high vacuum environment, which impedes their application to bio-liquid interfaces and presents a great challenge for analysis in solution environment. Recently, single layer graphene techniques have enabled electron microscopy imaging of materials and cells in solution. Here I propose an innovative method of probing bio-liquid interfaces using single graphene layer for various techniques such as mass spectrometric imaging of wet cells and tissues with time-of-flight secondary ion mass spectrometry (ToF-SIMS) and atmospheric pressure mass spectrometric (AP-MS) imaging technology, and time-of-flight medium energy ion scattering (ToF-MEIS) for the structural analysis of electrical double layer (EDL) between electrode and electrolyte solution. The analysis of bio-liquid interface using single graphene layer and ultrahigh vacuum-based micro/nanoscale characterization techniques will facilitate the acquisition of detailed intrinsic interfacial compositional and structural information of cell membranes, nano and bio materials in ambient solution environments for better understanding and control of interfaces for various researches of basic biology, biomedical science, electrochemistry, and material science. -
dc.description.statementofresponsibility prohibition -
dc.description.tableofcontents I. INTRODUCTION 1
II. Mass Spectrometry Imaging of Biological Samples using Graphene 3
1 ToF-SIMS Imaging of Untreated Wet Cell Membranes 3
1.1 Introduction 3
1.2 Materials and methods 5
1.2.1 Preparing fixed cells and graphene covered untreated wet cells for ToF-SIMS imaging 5
1.2.2 Fabrication of cell culture media reservoir 6
1.2.3 Instrumentation and experimental details 8
1.2.4 Ab-initio molecular dynamics (AIMD) simulation 8
1.3 Results and discussions 9
1.3.1 ToF-SIMS imaging of graphene covered untreated wet cells 9
1.3.2 Secondary ion sputtering through single-layer graphene 13
1.4 Conclusions 16
2 ToF-SIMS Imaging of Fixed Cell Membranes using Graphene-cover and Air-plasma Treatment 18
2.1 Introduction 18
2.2 Materials and methods 19
2.2.1 Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging 20
2.2.2 Cell culture 20
2.2.3 Chemical fixation and air-plasma treatment 21
2.2.4 Graphene transfer on cells and air-plasma treatment 21
2.2.5 Cellular sample characterization 22
2.3 Results and discussions 23
2.3.1 Synergy between graphene preserving cell morphology and air-plasma treatment cleaning cell surface enhances ToF-SIMS imaging 23
2.3.2 ToF-SIMS imaging improvement of neurons cells and skin cells 25
2.3.3 Effect of air-plasma treatment on graphene-covered cells 27
2.3.4 Effect of air-plasma treatment on ToF-SIMS imaging of graphene-removed cells 30
2.4 Conclusions 32
3 Atmospheric Pressure Mass Spectrometric Imaging of a Live Hippocampal Tissue 33
3.1 Introduction 33
3.2 Materials and methods 34
3.2.1 Materials 34
3.2.2 Preparation of single and multiple graphene layers on glass substrate 34
3.2.3 Mouse hippocampal tissue preparation 35
3.2.4 Instrumental setup for AP-MS imaging system 36
3.2.5 Instruments for Raman and Helium Ion Microscopy (HIM) 39
3.3 Results and discussions 39
3.3.1 Preparation and characterization of graphene coated glass substrate 39
3.3.2 Graphene layer dependence on the desorption efficiency with transmission-mode CW laser 40
3.3.3 Desorption characteristics (Graphene coated glass vs AuNPs) 42
3.3.4 High spatial resolution mass spectrometric imaging of live hippocampal tissue 44
3.3.5 Graphene-coated slide substrate for a highly reproducible MS imaging 47
3.4 Conclusions 48
III. Electrical Double Layer at Solid-Electrolyte Interface with ToF-MEIS 50
4 Structural Characterization of Electrical Double Layer using ToF-MEIS and Graphene Liquid Chamber 50
4.1 Introduction 50
4.2 Materials and methods 51
4.2.1 Graphene capping for liquid samples 51
4.2.2 Instrumentation and experimental details. 52
4.3 Results and discussions 53
4.3.1 EDL of KI solution on CuOx/Graphene 53
4.3.2 EDL of KI solution on carboxylated Fe3O4 nanoparticles 54
4.4 Conclusions 56
IV. Conclusions 58
REFERENCES 59
-
dc.format.extent 67 -
dc.language eng -
dc.publisher DGIST -
dc.title Analysis of Bio-Liquid Interfaces using Single Graphene Layer -
dc.type Thesis -
dc.identifier.doi 10.22677/Theses.200000282766 -
dc.description.alternativeAbstract 액체와 접촉하고 있는 전극 및 콜로이드 등의 고체 표면에서는 이온들의 농도 변화, 특이적 흡착, 용매화 및 용매 분자들의 재조직화와 같은 과학적 현상들이 일어난다. 생물 시스템 내에서도 다양한 바이오-액체 계면이 세포막, 소포 및 수화된 생체 분자 표면에 형성된다. 계면에서 형성되는 전하와 그 계면을 둘러싸고 있는 물 분자들과의 상호작용은 생체 분자들의 안전성, 자기조립 및 구조적 변화, 분자들간의 상호작용, 및 세포 간 통신에서 중요한 역할을 한다. 이러한 계면에서 일어나는 현상을 이해하기 위해서는 바이오-액체 계면의 조성과 구조에 대한 분자 및 나노 수준에서의 분석이 요구된다. 하지만, 초고진공에서 가속된 전자와 이온빔을 이용하는 나노분석 기술들로 고체-액체 계면을 분석하는 것은 기본적인 한계를 가지고 있다. 최근에 한층 그래핀을 이용하여 용액상에서의 나노물질 및 마르지 않은 세포를 전자현미경으로 분석한 연구 결과들이 보고되었다. 본 논문에서 그래핀을 이용하여 바이오-액체 계면을 분석할 수 있는 다양한 새로운 방법들을 제시하여, 비행시간형 이차이온 질량분석기술 또는 대기압 질량분석 이미징 기술을 이용하여 용액상에서 손상되지 않은 생체시료의 질량분석 이미징을 가능하게 하였다. 또한 진공에서 액체를 가두는 그래핀 기술과 비행시간 중에너지 이온산란 분석법을 이용하여 원자 수준의 두께 분해능으로 계면에서 형성되는 전기이중층의 구조를 분석하였다. 이러한 나노 분석 기술과 그래핀을 결합한 새로운 기술은 생명과학, 전기화학 및 재료과학 등 다양한 연구분야에서 다루는 바이오-액체 계면의 구조에 대한 상세한 정보와 그 구조로 인한 현상들을 이해하는데 기여할 것이다. -
dc.description.degree Doctor -
dc.contributor.department New Biology -
dc.contributor.coadvisor Jong-Chan Lee -
dc.date.awarded 2020-02 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.ND 임97 202002 -
dc.date.accepted 2020-01-20 -
dc.contributor.alternativeDepartment 뉴바이올로지전공 -
dc.embargo.liftdate 2021-12-31 -
dc.contributor.affiliatedAuthor Lee, Jong-Chan -
dc.contributor.affiliatedAuthor Moon, Dae Won -
dc.contributor.affiliatedAuthor Lim, Heejin -
dc.contributor.alternativeName Dae Won Moon -
dc.contributor.alternativeName 이종찬 -
dc.contributor.alternativeName 임희진 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of New Biology Theses Ph.D.

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE