Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor 유종성 -
dc.contributor.author Tareq, Foysal Kabir -
dc.date.accessioned 2020-08-06T06:15:50Z -
dc.date.available 2020-08-06T06:15:50Z -
dc.date.issued 2020 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000320757 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/12157 -
dc.description Heteroatoms doped graphene, non-precious and precious metal catalyst, oxygen and hydrogen evolution reaction, alkaline water electrolyzer -
dc.description.abstract With the ever-growing energy demand, fossil fuel consumption, and their adverse impact on the environment over the world, the advanced research complying to develop clean energy resources as an ideal alternative to fossil fuels. Electrochemical water (H2O) conversion into hydrogen and oxygen gas (2H2O  2H2 + O2), a nonfossil fuel-based technology has gained great attention around the world scientific community due to its potentials replacement of traditional fossil fuel. The water electrolysis involving two half cell reactions in the electrolyzer, one is a cathodic reaction known as hydrogen evolution reaction (HER) and another one is an anodic reaction, which known as oxygen evolution reaction (OER). However, their commercialization has been hindered by high cost and low durability of best noble metal-based catalysts such as Pt/C for HER and IrO2/RuO2 for OER in the water electrolyzer. The major drawbacks of these catalysts are rear availability, the tendency of particle agglomeration and oxidization in the oxidizing environment leads to poor activity and stability. Therefore, significant ongoing research concentrated on the developing of non-noble metal-based catalysts or reducing the noble metal usage with non-noble metal/non-metal catalysts by improving intrinsic activity and stability. To address these issues, we have carried out the research to develop new kinds of cata-lyst supports and nonprecious metal/minimal amount of precious metal-based catalysts for improving the performance and durability of HER and OER catalysts in alkaline water electrolyzer. Our advanced research acknowledges that there is still plenty of scope for the development and improvement of HER and OER elec-trocatalysts.

The work detailed in this dissertation is divided into five parts, in which the first chapter aims at providing the general introduction of electrochemical water splitting as well as the motivation, which focused on our interest in the perspective of scientific challenge. In addition, we elaborate on the reaction pathway of HER and OER in the different electrolytes with a general overview of catalyst development. The second chapter deals with the physical and electrochemical characterization techniques.

In chapter three, we present the first report on the synthesis of a new kind of conductive, robust honeycomb structured few-layer S, N-doped crystalline graphene from S-doped carbon nitride (SCN) to support the mini-mal amount of Rh clusters and its HER electrocatalytic properties in alkaline media. The introduction of ul-tra-small Rh clusters increases the active sites and the synergistic effects between Rh and S, N elements on the graphene framework. The interaction between heteroatoms (S, N) and Rh can be modulated the electron-ic structure of Rh, which increases the active sites for H adsorption and avoid the aggregation of catalyst re-sulting in favor of outstanding HER performance.

In Chapter four, ultra-small NiMo nanoparticles anchored N-doped graphene electrocatalyst is prepared for HER in alkaline media, where N-doped graphene is synthesized from nonconductive graphitic carbon nitride (CN). The optimized catalyst shows excellent HER activity and stability in alkaline media. A variety of char-acterization techniques suggest that the catalytically active sites of this unique catalyst are associated with the particle size, metal centers, and the metal coordinated to the nitrogen within the graphene framework.

Lastly, in Chapter five, we have rationally designed new kinds of cheap transitional metal (M = Co, Ni) single atom coordinated N doped graphene as electrocatalyst for OER in alkaline medium. Metal single atom coor-dinated N-doped graphene is prepared by the pyrolysis of [M(EDTA)]2- complex. It is observed from ultra-high-resolution transmission electron microscopy (UHR-TEM) that single metal atom distributed over N-doped graphene. The metal single-atom coordinated with N over graphene and act as the active sites for OER. The metal single-atom coordinated N on graphene electrocatalysts showed excellent electrocatalytic OER activity, which is better than of commercial OER catalyst. Excellent electrocatalytic OER activity and stability is mainly originated from the active sites of single atom coordinated N within graphene framework.
-
dc.description.statementofresponsibility N -
dc.description.tableofcontents List of Contents

Abstract i
List of contents iii
List of Figures v

I. Chapter 1. Introduction 8
1.1 Motivation 8
1.2 Hydrogen evolution reaction 9
1.3 Oxygen evolution reaction 11
1.4 Scope 13
1.5 References 14
II. Chapter 2. Characterization technique 18
2.1 Materials characterization 18
2.2 Electrochemical characterization 18
2.3 References 19
III. Chapter 3. S-doped carbon nitride driven honeycomb structure S, N-doped crystalline graphene framework to support Rh clusters: a new benchmark electrocatalyst for hydrogen evolution reaction 21
3.1 Introduction 21
3.2 Experimental 23
3.3 Results and discussion 25
3.4 Conclusion 41
3.5 References 42
IV. Chapter 4. Graphitic carbon nitride driven N-doped graphene supported NiMo nanoparticles electrocatalyst for hydrogen evolution reaction 47
4.1 Introduction 47
4.2 Experimental 49
4.3 Results and discussion 51
4.4 Conclusion 63
4.5 References 63
V. Chapter 5. Transitional metal (M=Co, Ni) single atom coordinated N-doped graphene electrocatalyst for oxygen evolution reaction in alkaline water electrolysis 67
5.1 Introduction 67
5.2 Experimental 68
5.3 Results and discussion 69
5.4 Conclusion 80
5.5 References 80


List of Figures
Figure 3-1 (a) Schematic illustration of the synthesis process of Rh anchored S, N doped graphene. (b) XRD patterns of SCN, SCNMg-650, SCNMg-750, SCNMg-850, and SCNMg-950. (c) XRD patterns of SCNMg-850-ASP. (d) Raman spectrum, (e) N2 adsorption-desorption isotherm, and (f) conductivity plot of SCN, SCNMg-650, SCNMg-750, SCNMg-850, and SCNMg-950 26
Figure 3-2 SEM and TEM image of (a, f) SCN, (b, g) SCNMg-650, (c, h) SCNMg-750, (d, i) SCNMg-850, and (e, j) SCNMg-950 29
Figure 3-3 XPS spectrum of (a) C 1s, (b) N 1s, (c) S 2p, (d) O1s of SCN and SCNMg-850. Proposed model of (e) SCN, and (f) S, N doped graphene. (g) HER polarization curve, and (h) Nyquist plots of SCN, SCNMg-650, SCNMg-750, SCNMg-850, and SCNMg-950 31
Figure 3-4 (a) XRD pattern of SCNMg-850-73Rh-500, SCNMg-850-36Rh-500, SCNMg-850-18Rh-500. (b) TEM of SCNMg-850-36Rh-500. (c) HAADF-STEM image of SCNMg-850-36Rh-500. (d-f) HR-TEM image of SCNMg-850-36Rh-500. (g) EDS mapping of SCNMg-850-36Rh-500. TEM image of (h) SCNMg-850-18Rh-500, (i) SCNMg-850-36Rh-500 33
Figure 3-5 (a) LSV polarization curves of SCNMg-850-18Rh-500, SCNMg-850-36Rh-500, SCNMg-850-73Rh-500, 20% and 46% commercial Pt/C. (b) TGA plot of SCNMg-850-36Rh-500, VC-36Rh-500, rGO-36Rh-500, and SCN-36Rh-500. (c) EIS Nyquist plots of SCNMg-850-18Rh-500, SCNMg-850-36Rh-500, SCNMg-850-73Rh-500, 20% and 46% commercial Pt/C. (d) LSV polarization curves of SCNMg-850-36Rh-500, SCNMg-850-36Rh-700, SCNMg-850-36Rh-500, 20% and 46% commercial Pt/C. TEM image of (e) SCNMg-850-36Rh-500, (f) SCNMg-850-36Rh-700, and (g) SCNMg-850-36Rh-900 35
Figure 3-6 (a) LSV polarization curves of SCNMg-850-36Rh-500, rGO-36Rh-500, VC-36Rh-500, SCN-36Rh-500, 20% and 46% commercial Pt/C. TEM image of (b) VC-36Rh-500, (c) rGO-36Rh-500, and (d) SCN-36Rh-500. (e) EIS Nyquist plots of SCNMg-850-36Rh-500, rGO-36Rh-500, VC-36Rh-500, SCN-36Rh-500, 20% and 46% commercial Pt/C. (f) Tafel’s plots of SCNMg-850-36Rh-500, rGO-36Rh-500, VC-36Rh-500, SCN-36Rh-500, and 46% commercial Pt/C. (g) CV curve of SCNMg-850-36Rh-500 and 46% Pt/C at the potential window of 0-1.2V (vs RHE) 37
Figure 3-7 (a) Chronoamperometric response at a constant potential for SCNMg-850-36Rh-500. (b) HAADF-STEM image of SCNMg-850-36Rh-500 after 500 hours stability test. (c) HR-TEM image of SCNMg-850-36Rh-500 after 500 hours stability test. (i) Energy dispersion spectroscopy mapping of SCNMg-850-36Rh-500-after stability of carbon (green), sulfur (yellow), nitrogen (blue), rhodium (red), and oxygen (orange), scale bar, 10nm 38
Figure 3-8 XPS spectrum of (a) N 1s, (b) S 2p (c) C 1s, (d) O 1s 0f SCNMg-850-36Rh-500 and SCNMg-850. (e) XPS spectra Rh 3d of SCNMg-850-36Rh-500 40
Figure 4-1 (a) Schematic diagram of the synthesis method. (b) XRD pattern of CN, CN-650Ar/H2, CNMg-650-B, and CNMg-650. (c) XRD pattern of CN, CNMg-650, CNMg-750, CNMg-850, and CNMg-950. (d) Raman spectrum of CN, CN-650Ar/H2, CNMg-650, CNMg-750, CNMg-850, and CNMg-950 52
Figure 4-2 SEM and TEM image of (a,f) CN, (b,g) CNMg-650, (c,h) CNMg-750, (d,i) CNMg-850, and (e,j) CNMg-950 53
Figure 4-3 (a) N2 adsorption-desorption isotherm, (b) pores size distribution, (c) electrical conductivity against pressure plot of CN, CNMg-650Ar/H2, CNMg-650, CNMg-750, CNMg-850, CNMg-950. (d) FTIR spectrum of CN, CNMg-650Ar/H2, CNMg-650 54
Figure 4-4 XPS spectrum of (a) C 1s, (b) N1s, (c) O 1s of CN and CNMg-650 56
Figure 4-5 (a) TEM image of 1Ni2Mo nanoparticles. (b) EDS mapping of 1Ni2Mo nanoparticles. (c) EDS spectrum of 1Ni2Mo nanoparticles. (d) XRD pattern of CNMg-650-1Ni2Mo. (e) TEM image of CNMg-650-1Ni2Mo. (f) TGA curve of CNMg-650-1Ni2Mo. (g) TEM image of CNMg-650-1Ni1Mo. (h) TEM image of CNMg-650-2Ni1Mo 58
Figure 4-6 (a) LSV polarization curve, (b) Tafel’s plot of CNMg-650-1Ni2Mo, CNMg-650-1Ni1Mo, CNMg-650-2Ni1Mo, 20% Pt/C. (c) Nyquist plot of CNMg-650-1Ni2Mo, CNMg-650-1Ni1Mo, CNMg-650-2Ni1Mo, 20% Pt/C, and GC. (d) LSV polarization curve, (e) Tafels plot, (f) Nyquist plot of CN-1Ni2Mo, CN-650Ar/H2-1Ni2Mo, C-1Ni2Mo, rGO-1Ni2Mo, and CNMg-650-1Ni2Mo. (g) Time vs current density plot of CNMg-650-1Ni2Mo 60
Figure 4-7 XPS spectrum of (a) Ni2p, (b) Mo 3d of CNMg-650-1Ni2Mo, (c) N 1s, (d) C1s, and (e) O1s of CNMg-650 and CNMg-650-1Ni2Mo 62
Figure 5-1 (a) Schematic diagram for the synthesis of EDMX-750-Ar/H2. (b) XRD pattern of EDCo0.5-750-B, EDCo0.5-750, EDNi0.5-750-B, EDNi0.5-750. TEM image of (c) EDCo0.5-750-B, (d) EDNi0.5-750-B. XRD pattern of (e) EDCo0.5-750, EDCo1-750, EDCo2-750, EDCo3-750. (f) EDNi0.5-750, EDNi1-750, EDNi2-750, EDNi3-750 70
Figure 5-2 SEM and TEM image of (a, e) EDCo0.5-750, (b, f) EDCo1-750, (c, g) EDCo2-750, (d, h) EDCo3-750, (i, m) EDNi0.5-750, (j, n) EDNi1-750, (k, o) EDNi2-750, (l, p) EDNi3-750 71
Figure 5-3 Raman spectrum of (a) EDCoX-750 (b) EDNiX-750. N2 adsorption-desorption isotherm of (c) EDCoX-750, (d) EDNiX-750. Pore size distribution plot of (e) EDCoX-750, (f) EDNiX-750 72
Figure 5-4 (a) OER polarization curve of EDCoX-750, RuO2 (b) OER polarization curve of EDNiX-750, RuO2 74
Figure 5-5 (a) TEM image of EDCo2-750-Ar/H2. (b) HADDF-STEM image of EDCo2-750-Ar/H2. (c) EDS mapping of EDCo2-750Ar/H2. (d) TEM image of EDNi1-750-Ar/H2. (e) HADDF-STEM image of EDNi1-750-Ar/H2. (c) EDS mapping of EDNi1-750Ar/H2 75
Figure 5-6 (a) N2 adsorption-desorption isotherm, (b) pore size distribution of EDCo2-750-Ar/H2, (c) N2 adsorption-desorption isotherm, (b) pore size distribution of EDNi1-750-Ar/H2 76
Figure 5-7 (a) OER polarization curve of EDCo2-750, EDCo2-750-Ar/H2, RuO2. (b) OER polarization curve of EDNi1-750, EDNi1-750-Ar/H2, RuO2. (c) TGA plot of EDCo2-750-Ar/H2 and EDNi1-750-Ar/H2 77
Figure 5-8 XPS spectrum of (a) C1s, (b) N 1s, (c) O 1s, (d) Co 2p of EDCo2-750-Ar/H2. XPS spectrum of (e) C1s, (f) N 1s, (g) O 1s, (h) Ni 2p of EDNi1-750-Ar/H2 78
-
dc.format.extent 89 -
dc.language eng -
dc.publisher DGIST -
dc.title Design, preparation, and characterization of supports and catalysts for hydrogen and oxygen evolution reaction in alkaline water electrolysis -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.200000320757 -
dc.description.alternativeAbstract 에너지, 화석연료의 사용이 증가하고, 환경에 대한 영향이 커져 가면서, 이들을 대체하기 위한 친환경 에너지 자원을 이용하는 첨단 연구가 증가하고 있는 추세이다. 이에 대안으로 물을 수소와 산소로 전기 분해하는 수전해 기술이 전세계 과학자들에게 주목을 받고 있다. 수전해 기술은 수소 발생 반응 (환원 반응)과 산소 발생 반응 (산화 반응)으로 나뉘어 진다. 그러나 수소 발생 반응의 촉매로 쓰이는 백금, 산소 발생 반응에 쓰이는 이리듐 또는 루테늄은 고가의 금속이고, 또한 이들의 촉매로써 안정성이 낮기 때문에 상업화에 있어 가장 큰 문제점으로 대두되고 있다. 특히 수전해 촉매로써 가장 큰 문제점은 반응 중 열화 현상으로 인한 나노 입자의 응집과, 산화 반응 조건에서 쉽게 산화되는 것인데, 이는 수전해 효율을 저하시키는 큰 요소이다. 그러므로, 상대적으로 경제성이 뛰어난 비백금 금속 (전이금속)을 이용하여 백금계열 금속과 비등한 성능과 안정성을 가지게 하거나, 백금 계열 금속을 소량만 사용하여 촉매를 합성하는 연구들이 진행중에 있다. 본 연구에서는 새로운 촉매 지지체를 합성하였고, 이에 비백금 계열 금속 또는 소량의 백금 계열 금속을 담지하여 알칼라인 조건에서 고활성 및 고안정성의 수소 발생 반응 또는 산소 발생 반응 촉매를 합성하였다. 우리의 새로운 연구는 전기화학적 수소 또는 산소 발생 반응 촉매를 개발하고 향상시킬 수 있는 방법론을 제시하고자 한다.
본 학위논문은 5장으로 나누어 지는데, 1장은 수전해 연구에 있어 개요, 동기 및 당위성 그리고 현 과학기술에 한계 및 해결해야 되는 문제에 대하여 다루고 있다. 게다가, 전해질에 따른 반응 단계와 이에 대응하는 촉매 개발 방법에 대해 정밀하게 서술하였다. 2장은 물리적 또는 전기화학적 시료 분석 기술에 대하여 다루었다.
3장에서는 우리는 새로운 전도성 및 황, 질소가 도핑된 몇 개의 층으로 구성된 그래핀 촉매 지 (S-doped carbon nitride, SCN)지체 합성에 대하여 기술하였다. 상기 합성된 지지체의 소량의 로듐 금속을 담지하였고, 알칼라인 조건에서 수소 발생 반응 특성을 연구하였다. 작은 로듐 클러스터 입자는 촉매의 활성지점을 증가시킬 뿐만 아니라, 지지체의 도핑 물질인 황과 질소와 상호작용하여 촉매의 활성을 증가시켰다. 그리고 앞서 언급된 상호작용은 컴퓨터 계산을 통하여 수소 흡착에너지를 증가시켰음을 입증하였고, 촉매의 응집을 막아주어 뛰어난 수소 발생 반응 활성을 보여주었다.
4장에는 아주 작은 니켈몰리브데넘을 질소가 도핑된 그래핀에 담지하여 알칼라인 조건에서 작동하는 수소 발생 반응 촉매를 합성 방법을 다루고 있다. 질소가 도핑된 그래핀은 비 전도성의 탄소 질화물을 이용하여 합성하였다. 최적화된 촉매는 높은 활성과 안정성을 보여주었다. 다양한 특성 분석 결과는 이 독특한 촉매의 높은 활성은 작은 입자 크기, 금속 중심, 질소가 도핑된 그래핀의 질소와의 배위결합에 기인하는 것은 보여주었다.
마지막으로 5장에서, 우리는 이성적으로 코발트, 니켈 단일 원자가 질소와 결합된 촉매를 합성 였고, 이를 알칼라인 조건에서 산소 발생 반응 촉매로 응용하였다. 상기 단일 원자 촉매는 [M(EDTA)]2- 복합체를 열처리하여 합성하였다. 초고분해는 투과전자현미경을 이용하여 단일 원자가 질소가 도핑된 그래핀에 분포함을 입증하였다. 그 단일 원자와 질소의 결합은 산소 발생 반응의 활성 지점으로 역할을 하고 있다. 상기 합성된 촉매는 뛰어난 산소 발생 반응 활성을 보여주었고, 그 정도는 상용 촉매보다 우수하였다. 이 뛰어난 성능은 단일 원자와 그래핀에 도핑된 질소의 결합에 의한 활성 지점에서 나타난다.
-
dc.description.degree Master -
dc.contributor.department Department of Energy Science and Engineering -
dc.contributor.coadvisor Lee, Ju Hyuck -
dc.date.awarded 2020/08 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.EMT184D 202008 -
dc.date.accepted 7/23/20 -
dc.contributor.alternativeDepartment 에너지공학전공 -
dc.embargo.liftdate 8/31/25 -
dc.contributor.affiliatedAuthor Tareq, Foysal Kabir -
dc.contributor.affiliatedAuthor Yu, Jong-Sung -
dc.contributor.affiliatedAuthor Lee, Ju Hyuck -
dc.contributor.alternativeName 포이살 카비르 타렉 -
dc.contributor.alternativeName Yu, Jong-Sung -
dc.contributor.alternativeName 이주혁 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE