Detail View

DC Field Value Language
dc.contributor.author Kim, Jigeon -
dc.contributor.author Cho, Sinyoung -
dc.contributor.author Dinic, Filip -
dc.contributor.author Choi, Jongmin -
dc.contributor.author Choi, Changsoon -
dc.contributor.author Jeong, Soon Moon -
dc.contributor.author Lee, Jong-Soo -
dc.contributor.author Voznyy, Oleksandr -
dc.contributor.author Ko, Min Jae -
dc.contributor.author Kim, Younghoon -
dc.date.accessioned 2021-01-22T07:04:41Z -
dc.date.available 2021-01-22T07:04:41Z -
dc.date.created 2020-07-30 -
dc.date.issued 2020-09 -
dc.identifier.issn 2211-2855 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/12672 -
dc.description.abstract Advances in surface chemistry and manipulation of fully inorganic CsPbI3 perovskite quantum dots (CsPbI3-QDs) have enabled improving the charge transport and photovoltaic performance of CsPbI3-QD thin films by replacing their native long-chain, insulating ligands with short-chain ligands. However, the conventional approach based on formamidinium (FA) replacement removes the hydrophobic protective layer, opening the path for moisture penetration and resulting in poor device stability. We demonstrate that short-chain and hydrophobic phenethylammonium (PEA) cations, instead of FA, are efficiently incorporated only onto CsPbI3-QD surfaces, confirmed by Fourier-transform infrared, H nuclear magnetic resonance and density functional theory calculations. PEA incorporation leads simultaneously to improved photovoltaic performance and moisture stability of resultant CsPbI3-QDs without any change in size, fully inorganic composition, and dimensionality of CsPbI3-QDs. Therefore, PEA-incorporated CsPbI3-QD solar cells show a high device power conversion efficiency of 14.1% and high moisture stability, retaining over 90% of the initial performance after 15 days under ambient conditions. © 2020 Elsevier Ltd -
dc.language English -
dc.publisher Elsevier BV -
dc.title Hydrophobic stabilizer-anchored fully inorganic perovskite quantum dots enhance moisture resistance and photovoltaic performance -
dc.type Article -
dc.identifier.doi 10.1016/j.nanoen.2020.104985 -
dc.identifier.wosid 000560729000001 -
dc.identifier.scopusid 2-s2.0-85086889330 -
dc.identifier.bibliographicCitation Kim, Jigeon. (2020-09). Hydrophobic stabilizer-anchored fully inorganic perovskite quantum dots enhance moisture resistance and photovoltaic performance. Nano Energy, 75, 104985. doi: 10.1016/j.nanoen.2020.104985 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor CsPbI3 perovskite quantum dots -
dc.subject.keywordAuthor Phenethylammonium -
dc.subject.keywordAuthor Moisture stability -
dc.subject.keywordAuthor Solar cells -
dc.subject.keywordAuthor Electroluminescence -
dc.subject.keywordPlus SOLAR-CELLS -
dc.subject.keywordPlus HALIDE PEROVSKITES -
dc.subject.keywordPlus HIGH-EFFICIENCY -
dc.subject.keywordPlus PHASE -
dc.subject.keywordPlus NANOCRYSTALS -
dc.subject.keywordPlus DYNAMICS -
dc.subject.keywordPlus CSPBX3 -
dc.subject.keywordPlus TIN -
dc.subject.keywordPlus BR -
dc.citation.startPage 104985 -
dc.citation.title Nano Energy -
dc.citation.volume 75 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

최종민
Choi, Jongmin최종민

Department of Energy Science and Engineering

read more

Total Views & Downloads