Detail View

Haploinsufficiency of Cyfip2 Causes Lithium-Responsive Prefrontal Dysfunction
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Haploinsufficiency of Cyfip2 Causes Lithium-Responsive Prefrontal Dysfunction
Issued Date
2020-09
Citation
Lee, Seung-Hyun. (2020-09). Haploinsufficiency of Cyfip2 Causes Lithium-Responsive Prefrontal Dysfunction. Annals of Neurology, 88(3), 526–543. doi: 10.1002/ana.25827
Type
Article
Keywords
DENDRITIC SPINESOSCILLATIONSPROTEINSCHANNELSINSIGHTSAUTISMBEHAVIORDELETIONDENSITYNETWORK
ISSN
0364-5134
Abstract
Objective: Genetic variants of the cytoplasmic FMR1-interacting protein 2 (CYFIP2) encoding an actin-regulatory protein are associated with brain disorders, including intellectual disability and epilepsy. However, specific in vivo neuronal defects and potential treatments for CYFIP2-associated brain disorders remain largely unknown. Here, we characterized Cyfip2 heterozygous (Cyfip2+/−) mice to understand their neurobehavioral phenotypes and the underlying pathological mechanisms. Furthermore, we examined a potential treatment for such phenotypes of the Cyfip2+/− mice and specified a neuronal function mediating its efficacy. Methods: We performed behavioral analyses of Cyfip2+/− mice. We combined molecular, ultrastructural, and in vitro and in vivo electrophysiological analyses of Cyfip2+/− prefrontal neurons. We also selectively reduced CYFIP2 in the prefrontal cortex (PFC) of mice with virus injections. Results: Adult Cyfip2+/− mice exhibited lithium-responsive abnormal behaviors. We found increased filamentous actin, enlarged dendritic spines, and enhanced excitatory synaptic transmission and excitability in the adult Cyfip2+/− PFC that was restricted to layer 5 (L5) neurons. Consistently, adult Cyfip2+/− mice showed increased seizure susceptibility and auditory steady-state responses from the cortical electroencephalographic recordings. Among the identified prefrontal defects, lithium selectively normalized the hyperexcitability of Cyfip2+/− L5 neurons. RNA sequencing revealed reduced expression of potassium channel genes in the adult Cyfip2+/− PFC. Virus-mediated reduction of CYFIP2 in the PFC was sufficient to induce L5 hyperexcitability and lithium-responsive abnormal behavior. Interpretation: These results suggest that L5-specific prefrontal dysfunction, especially hyperexcitability, underlies both the pathophysiology and the lithium-mediated amelioration of neurobehavioral phenotypes in adult Cyfip2+/− mice, which can be implicated in CYFIP2-associated brain disorders. ANN NEUROL 2020;88:526–543. © 2020 American Neurological Association
URI
http://hdl.handle.net/20.500.11750/12799
DOI
10.1002/ana.25827
Publisher
John Wiley & Sons Inc.
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads