Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Sa, Young Jin ko
dc.contributor.author Jung, Hyejin ko
dc.contributor.author Shin, Dongyup ko
dc.contributor.author Jeong, Hu Young ko
dc.contributor.author Ringe, Stefan ko
dc.contributor.author Kim, Hyungjun ko
dc.contributor.author Hwang, Yun Jeong ko
dc.contributor.author Joo, Sang Hoon ko
dc.date.accessioned 2021-01-22T07:37:32Z -
dc.date.available 2021-01-22T07:37:32Z -
dc.date.created 2020-10-29 -
dc.date.issued 2020-10 -
dc.identifier.citation ACS Catalysis, v.10, no.19, pp.10920 - 10931 -
dc.identifier.issn 2155-5435 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/12815 -
dc.description.abstract Atomically dispersed nickel sites complexed on nitrogen-doped carbon (Ni-N/C) have demonstrated considerable activity for the selective electrochemical carbon dioxide reduction reaction (CO2RR) to CO. However, the high-temperature treatment typically involved during the activation of Ni-N/C catalysts makes the origin of the high activity elusive. In this work, Ni(II) phthalocyanine molecules grafted on carbon nanotube (NiPc/CNT) and heat-treated NiPc/CNT (H-NiPc/CNT) are exploited as model catalysts to investigate the impact of thermal activation on the structure of active sites and CO2RR activity. H-NiPc/CNT exhibits a ∼4.7-fold higher turnover frequency for CO2RR to CO in comparison to NiPc/CNT. Extended X-ray absorption fine structure analysis and density functional theory (DFT) calculations reveal that the heat treatment transforms the molecular Ni2+-N4 sites of NiPc into Ni+-N3V (V: vacancy) and Ni+-N3 sites incorporated in the graphene lattice that concomitantly involves breakage of Ni-N bonding, shrinkage in the Ni-N-C local structure, and decrease in the oxidation state of the Ni center from +2 to +1. DFT calculations combined with microkinetic modeling suggest that the Ni-N3V site appears to be responsible for the high CO2RR activity because of its lower barrier for the formation of *COOH intermediate and optimum *CO binding energy. In situ/operando X-ray absorption spectroscopy analyses further corroborate the importance of reduced Ni+ species in boosting the CO2RR activity. Copyright © 2020 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Thermal Transformation of Molecular Ni2+-N-4 Sites for Enhanced CO2 Electroreduction Activity -
dc.type Article -
dc.identifier.doi 10.1021/acscatal.0c02325 -
dc.identifier.wosid 000577156300010 -
dc.identifier.scopusid 2-s2.0-85094209051 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.description.journalClass 1 -
dc.contributor.nonIdAuthor Sa, Young Jin -
dc.contributor.nonIdAuthor Jung, Hyejin -
dc.contributor.nonIdAuthor Shin, Dongyup -
dc.contributor.nonIdAuthor Jeong, Hu Young -
dc.contributor.nonIdAuthor Kim, Hyungjun -
dc.contributor.nonIdAuthor Hwang, Yun Jeong -
dc.contributor.nonIdAuthor Joo, Sang Hoon -
dc.identifier.citationVolume 10 -
dc.identifier.citationNumber 19 -
dc.identifier.citationStartPage 10920 -
dc.identifier.citationEndPage 10931 -
dc.identifier.citationTitle ACS Catalysis -
dc.type.journalArticle Article -
dc.description.isOpenAccess N -
dc.subject.keywordAuthor Ni-N/C catalyst -
dc.subject.keywordAuthor electrochemical CO2 reduction -
dc.subject.keywordAuthor heat treatment -
dc.subject.keywordAuthor local structure -
dc.subject.keywordAuthor oxidation state -
dc.subject.keywordPlus EFFICIENT ELECTROCATALYTIC ACTIVITY -
dc.subject.keywordPlus ELECTROCHEMICAL REDUCTION -
dc.subject.keywordPlus CARBON-DIOXIDE -
dc.subject.keywordPlus ORGANIC FRAMEWORKS -
dc.subject.keywordPlus SELECTIVITY -
dc.subject.keywordPlus CATALYSTS -
dc.subject.keywordPlus OXYGEN REDUCTION -
dc.subject.keywordPlus SINGLE ATOMS -
dc.subject.keywordPlus NICKEL SITES -
dc.subject.keywordPlus METAL -
dc.contributor.affiliatedAuthor Ringe, Stefan -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Ab initio multi-scale engineering Lab(AIMS-E Lab) 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE