Cited 5 time in webofscience Cited 5 time in scopus

Redox-Inactive Metal Ions That Enhance the Nucleophilic Reactivity of an Alkylperoxocopper(II) Complex

Redox-Inactive Metal Ions That Enhance the Nucleophilic Reactivity of an Alkylperoxocopper(II) Complex
Kim, BoheeKim, SeonghanOhta, TakehiroCho, Jaeheung
DGIST Authors
Cho, Jaeheung
Issue Date
Inorganic Chemistry, 59(14), 9938-9943
Article Type
The importance of redox-inactive metal ions in modulating the reactivity of redox-active biological systems is a subject of great current interest. In this work, the effect of redox-inactive metal ions (M3+ = Sc3+, Y3+, Yb3+, La3+) on the nucleophilic reactivity of a mononuclear ligand-based alkylperoxocopper(II) complex, [Cu(iPr2-tren-C(CH3)2O2)]+ (1), was examined. 1 was prepared by the addition of hydrogen peroxide and triethylamine to the solution of [Cu(iPr3-tren)(CH3CN)]+ (iPr3-tren = tris[2-(isopropylamino)ethyl]amine) via the formation of [Cu(iPr3-tren)(O2H)]+ (2) in methanol (CH3OH) at 30 °C. 1 was characterized using density functional theory (DFT) calculations and spectroscopic methods such as UV-vis, resonance Raman (rR), and electron paramagnetic resonance (EPR). DFT calculations support the electronic structure of 1 with an intermediate geometry between the trigonal-bipyramidal and square-pyramidal geometries, which is consistent with the observed EPR signal exhibiting a signal with g⊥ = 2.03 (A⊥ = 16 G) and g|| = 2.19 (A|| = 158 G). The Cu-O bond stretching frequency of 1 was observed at 507 cm-1 for 16O2 species (486 cm-1 for 18O2 species), and its O-O vibrational energy was determined to be 799 cm-1 for 16O2 species (759 cm-1 for 18O2 species) by rR spectroscopy. The reactivity of 1 was investigated in oxidative nucleophilic reactions. The positive slope of the Hammett plot (ρ = 2.3(1)) with para-substituted benzaldehydes and the reactivity order with 1°-, 2°-, and 3°-CHO demonstrate well the nucleophilic character of this copper(II) ligand-based alkylperoxo complex. The Lewis acidity of M3+ improves the oxidizing ability of 1. The modulated reactivity of 1 with M3+ was revealed to be an opposite trend of the Lewis acidity of M3+ in aldehyde deformylation. © 2020 American Chemical Society.
American Chemical Society
There are no files associated with this item.
Department of Emerging Materials ScienceBiomimetic Materials Laboratory1. Journal Articles

qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.