Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Park, Jeong Hwa -
dc.contributor.author Jung, Chan Hoon -
dc.contributor.author Kim, Kyeong Joon -
dc.contributor.author Kim, Doyeub -
dc.contributor.author Shin, Hong Rim -
dc.contributor.author Hong, Jong-Eun -
dc.contributor.author Lee, Kang Taek -
dc.date.accessioned 2021-04-29T13:00:25Z -
dc.date.available 2021-04-29T13:00:25Z -
dc.date.created 2021-02-04 -
dc.date.issued 2021-01 -
dc.identifier.issn 1944-8244 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/13485 -
dc.description.abstract Solid oxide cells (SOCs) are mutually convertible energy devices capable of generating electricity from chemical fuels including hydrogen in the fuel cell mode and producing green hydrogen using electricity from renewable but intermittent solar and wind resources in the electrolysis cell mode. An effective approach to enhance the performance of SOCs at reduced temperatures is by developing highly active oxygen electrodes for both oxygen reduction and oxygen evolution reactions. Herein, highly conductive Sm3+ and Nd3+ double-doped ceria (Sm0.075Nd0.075Ce0.85O2-δ, SNDC) is utilized as an active component for reversible SOC applications. We develop a novel La0.6Sr0.4Co0.2Fe0.8O3 -δ (LSCF)-SNDC composite oxygen electrode. Compared with the conventional LSCF-Gd-doped ceria oxygen electrode, the LSCF-SNDC exhibits μ35% lower cathode polarization resistance (0.042 ω cm2 at 750 °C) owing to rapid oxygen incorporation and surface diffusion kinetics. Furthermore, the SOC with the LSCF-SNDC oxygen electrode and the SNDC buffer layer yields a remarkable performance in both the fuel cell (1.54 W cm-2 at 750 °C) and electrolysis cell (1.37 A cm-2 at 750 °C) modes because the incorporation of SNDC promotes the surface diffusion kinetics at the oxygen electrode bulk and the activity of the triple phase boundary at the interface. These findings suggest that the highly conductive SNDC material effectively enhances both oxygen reduction and oxygen evolution reactions, thus serving as a promising material in reversible SOC applications at reduced temperatures. © 2021 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Enhancing Bifunctional Electrocatalytic Activities of Oxygen Electrodes via Incorporating Highly Conductive Sm3+and Nd3+Double-Doped Ceria for Reversible Solid Oxide Cells -
dc.type Article -
dc.identifier.doi 10.1021/acsami.0c17238 -
dc.identifier.wosid 000612551400032 -
dc.identifier.scopusid 2-s2.0-85099665467 -
dc.identifier.bibliographicCitation ACS Applied Materials & Interfaces, v.13, no.2, pp.2496 - 2506 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor reversible solid oxide cells -
dc.subject.keywordAuthor double-doped ceria -
dc.subject.keywordAuthor buffer layer -
dc.subject.keywordAuthor electrochemical performance -
dc.subject.keywordAuthor oxygen electrode -
dc.subject.keywordPlus FUEL-CELLS -
dc.subject.keywordPlus IONIC-CONDUCTIVITY -
dc.subject.keywordPlus AIR ELECTRODE -
dc.subject.keywordPlus TEMPERATURE -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus CATHODES -
dc.subject.keywordPlus CEO2 -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus REDUCTION -
dc.subject.keywordPlus LAYER -
dc.citation.endPage 2506 -
dc.citation.number 2 -
dc.citation.startPage 2496 -
dc.citation.title ACS Applied Materials & Interfaces -
dc.citation.volume 13 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
ETC 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE