Detail View

Suppressed Degradation and Enhanced Performance of CsPbI3Perovskite Quantum Dot Solar Cells via Engineering of Electron Transport Layers
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Lim, Sung Jun -
dc.contributor.author Kim, Jigeon -
dc.contributor.author Park, Jin Young -
dc.contributor.author Min, Jung-wook -
dc.contributor.author Yun, Seokjin -
dc.contributor.author Park, Taiho -
dc.contributor.author Kim, Younghoon -
dc.contributor.author Choi, Jongmin -
dc.date.accessioned 2021-04-29T14:30:02Z -
dc.date.available 2021-04-29T14:30:02Z -
dc.date.created 2021-03-02 -
dc.date.issued 2021-02 -
dc.identifier.issn 1944-8244 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/13500 -
dc.description.abstract CsPbI3 perovskite quantum dots (CsPbI3-PQDs) have recently come into focus as a light-harvesting material that can act as a platform through which to combine the material advantages of both perovskites and QDs. However, the low cubic-phase stability of CsPbI3-PQDs in ambient conditions has been recognized as a factor that inhibits device stability. TiO2 nanoparticles are the most regularly used materials as an electron transport layer (ETL) in CsPbI3-PQD photovoltaics; however, we found that TiO2 can facilitate the cubic-phase degradation of CsPbI3-PQDs due to its vigorous photocatalytic activity. To address these issues, we have developed chloride-passivated SnO2 QDs (Cl@SnO2 QDs), which have low photocatalytic activity and few surface traps, to suppress the cubic-phase degradation of CsPbI3-PQDs. Given these advantages, the CsPbI3-PQD solar cells based on Cl@SnO2 ETLs show significantly improved device operational stability (under conditions of 50% relative humidity and 1-sun illumination), compared to those based on TiO2 ETLs. In addition, the Cl@SnO2-based devices showed improved open circuit voltage and photocurrent density, resulting in enhanced power conversion efficiency (PCE) up to 14.5% compared to that of TiO2-based control devices (PCE of 13.8%). © 2021 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Suppressed Degradation and Enhanced Performance of CsPbI3Perovskite Quantum Dot Solar Cells via Engineering of Electron Transport Layers -
dc.type Article -
dc.identifier.doi 10.1021/acsami.0c15484 -
dc.identifier.wosid 000619638400020 -
dc.identifier.scopusid 2-s2.0-85100657158 -
dc.identifier.bibliographicCitation Lim, Sung Jun. (2021-02). Suppressed Degradation and Enhanced Performance of CsPbI3Perovskite Quantum Dot Solar Cells via Engineering of Electron Transport Layers. ACS Applied Materials & Interfaces, 13(5), 6119–6129. doi: 10.1021/acsami.0c15484 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor CsPbI3 perovskite quantum dots -
dc.subject.keywordAuthor colloidal quantum dots -
dc.subject.keywordAuthor phase stability -
dc.subject.keywordAuthor solar cells -
dc.subject.keywordAuthor electron transport layers -
dc.subject.keywordPlus Nanostructured materials -
dc.subject.keywordPlus Open circuit voltage -
dc.subject.keywordPlus Perovskite -
dc.subject.keywordPlus Photocatalytic activity -
dc.subject.keywordPlus Photocurrents -
dc.subject.keywordPlus Quantum chemistry -
dc.subject.keywordPlus Semiconductor quantum dots -
dc.subject.keywordPlus Solar cells -
dc.subject.keywordPlus TiO2 nanoparticles -
dc.subject.keywordPlus Titanium dioxide -
dc.subject.keywordPlus Ambient conditions -
dc.subject.keywordPlus Device stability -
dc.subject.keywordPlus Electron transport layers -
dc.subject.keywordPlus Light-harvesting -
dc.subject.keywordPlus Operational stability -
dc.subject.keywordPlus Photocurrent density -
dc.subject.keywordPlus Power conversion efficiencies -
dc.subject.keywordPlus Quantum dot solar cells -
dc.subject.keywordPlus Lead compounds -
dc.subject.keywordPlus Cell engineering -
dc.subject.keywordPlus Chlorine compounds -
dc.subject.keywordPlus Conversion efficiency -
dc.subject.keywordPlus Electron transport properties -
dc.subject.keywordPlus Nanocrystals -
dc.citation.endPage 6129 -
dc.citation.number 5 -
dc.citation.startPage 6119 -
dc.citation.title ACS Applied Materials & Interfaces -
dc.citation.volume 13 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

최종민
Choi, Jongmin최종민

Department of Energy Science and Engineering

read more

Total Views & Downloads