Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Ha, Youngkyoung -
dc.contributor.author Byun, Jinho -
dc.contributor.author Lee, Jaekwang -
dc.contributor.author Lee, Shinbuhm -
dc.date.accessioned 2021-06-28T20:04:05Z -
dc.date.available 2021-06-28T20:04:05Z -
dc.date.created 2021-03-18 -
dc.date.issued 2021-05 -
dc.identifier.issn 1863-8880 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/13778 -
dc.description.abstract Correlated transparent conductors (TCs) have attracted great attention because they can overcome the limitations of conventional TCs owing to their high visible transmittance and low sheet resistance. However, the most widely studied TC 3d1 SrVO3 exhibits low ultraviolet transmittance, and the recently investigated TC 4d2 SrMoO3 has low infrared transmittance. Here, it is proposed that the wide transparency range of correlated TCs arises from both high correlation strength and high transition energy from the O-2p to the transition metal d orbitals. Applying this comprehensive design principle to single-crystalline correlated metals, it is confirmed that correlated 4d1 SrNbO3 exhibits enhanced ultraviolet–visible–infrared transmittance, with low sheet resistance at room temperature, compared to 3d1 SrVO3 and 4d2 SrMoO3. Spectroscopic ellipsometry, X-ray photoelectron spectroscopy, and density functional theory calculations reveal that the advantageous properties of 4d1 SrNbO3 can be attributed to high p–d transition energy and moderate correlation effect. The design principle can aid the discovery of additional high-performance TC materials and further development of correlated TCs. © 2021 Wiley-VCH GmbH -
dc.language English -
dc.publisher John Wiley and Sons Inc -
dc.title Design Principles for the Enhanced Transparency Range of Correlated Transparent Conductors -
dc.type Article -
dc.identifier.doi 10.1002/lpor.202000444 -
dc.identifier.wosid 000626540800001 -
dc.identifier.scopusid 2-s2.0-85102210541 -
dc.identifier.bibliographicCitation Laser & Photonics Reviews, v.15, no.5, pp.2000444 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor correlation effect -
dc.subject.keywordAuthor p–d transition energy -
dc.subject.keywordAuthor SrNbO3 -
dc.subject.keywordAuthor transparency range -
dc.subject.keywordPlus Density functional theory -
dc.subject.keywordPlus Nanocrystalline materials -
dc.subject.keywordPlus Niobium compounds -
dc.subject.keywordPlus Sheet resistance -
dc.subject.keywordPlus Spectroscopic ellipsometry -
dc.subject.keywordPlus Transition metals -
dc.subject.keywordPlus Transparency -
dc.subject.keywordPlus X ray photoelectron spectroscopy -
dc.subject.keywordPlus Comprehensive designs -
dc.subject.keywordPlus Correlation effect -
dc.subject.keywordPlus Correlation strength -
dc.subject.keywordPlus Infrared transmittance -
dc.subject.keywordPlus Single-crystalline -
dc.subject.keywordPlus Transparent conductors -
dc.subject.keywordPlus Ultraviolet transmittances -
dc.subject.keywordPlus Visible transmittance -
dc.subject.keywordPlus Strontium compounds -
dc.citation.number 5 -
dc.citation.startPage 2000444 -
dc.citation.title Laser & Photonics Reviews -
dc.citation.volume 15 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Optics; Physics -
dc.relation.journalWebOfScienceCategory Optics; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Multifunctional films and nanostructures Lab 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE