Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor Kim, Cheol Gi -
dc.contributor.author Eom, Yun Ji -
dc.date.accessioned 2017-05-10T08:52:26Z -
dc.date.available 2016-08-18T00:00:00Z -
dc.date.issued 2016 -
dc.identifier.uri http://dgist.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002296137 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/1445 -
dc.description.abstract Magnetic nanoparticles (MNPs) with uniform shape and size distribution have been the great importance in various fields of applications, including magnetic energy, data storage, magnetic separation, drug delivery and biology applications. On the same time controlling the shape and size of the nanoparticles will have a significant effect on its various properties and consequently the potential applications. Therefore, various approaches like sonochemical, polyol, hydrothermal synthesis, microemulsion, thermal decomposition, and co-precipitation method have been developed for the nanoparticles morphology control. Among these approaches, the thermal decomposition route is considered the most attractive method for synthesis of high crystalline and uniform particle size distribution. However, the extent of control over particle dispersion and morphology was not adequate for achieving particles useful in real applications. In this thesis, I present a facile, safe, and convenient thermal decomposition route for morphology controlled synthesis of two kinds of ferrite nanoparticles (Fe3O4 and CoFe2O4) and one kind of magnetic alloy nanoparticles (FePt) for using in bio-medical applications.
For the ferrite nanoparticles, simple modification of the reaction condition, including temperature, time, solvent, surfactant, and precursor amount allowed us to isolate nanoparticles as cubes, hexagons and spheres ferrite NPs with broad sizes ranging. Oleic acid and oleylamine were used as the solvents, stabilizers, and reducing agents and iron(III) acetylacetonate and cobalt(II) acetylacetonate were successfully employed as precursors instead of commonly used toxic, flammable and expensive pentacarbonyl.
On the other hand, for FePt alloy nanoparticles, we could control the Fe atomic composition in FePt particle and two kind of structure which are homogeneous FePt and heterodimer structure (FePt/Fe3O4). For controlling the FePt alloy nanoparticles, we found that both of the reducing agent and precursor molar ratio are important parameter. First, using 1,2-hexadecanediol, when precursor mole ratio (Fe:Pt) increase from 1:1 to 3:1, Fe composition also increased. However, there are no more increase of Fe composition when used 4:1 molar ratio and also the heterodimer structures of Fe3O4/FePt is formed. On the other hand, when 1-octadecene, was used, no hetero structure even over 4:1 molar ratio is formed and also the controlling of FePt atomic composition ratio is more easier than the case of using 1,2-hexadecanediol.
Since the bio-compatibility is one of the important issues from the view point of practical bio-application, my thesis also focused on studying the effect of concentration of the synthesized FePt nanoparticles on the cytotoxicity of CCK-8 assay and Live/Dead cell through staining & confocal microscopy images. The cell survival rate increased with the culture days increased and concentration. 80% cell viability was maintained in less than 1000 μl/ml concentration and therefore the possibility for using our nanoparticles in the bio- application was confirmed from these data. ⓒ 2016 DGIST
-
dc.description.tableofcontents Ⅰ. Introduction 1
--
Ⅱ. Research background 4
--
2.1. Magnetic nanoparticles 4
--
2.1.1. Ferrite 4
--
2.1.2. Other types of ferrites 6
--
2.2. Magnetic properties 8
--
2.2.1. Superparamagnetism 8
--
2.2.2. Anisotropy 12
--
2.3. Synthesis method of magnetic nanoparticles 13
--
2.3.1. Co-precipitation 13
--
2.3.2. Thermal decompostion 15
--
2.3.3. Formation of nanoparticles 16
--
2.4. Characterization 18
--
2.4.1. Transmission Electron Microscopy 18
--
2.4.2. X-ray diffraction 18
--
2.4.3. Vibrating Sample Magnetometer 19
--
Ⅲ. The synthesis of Fe3O4 and CoFe2O4 nanoparticles 20
--
3.1. Introduction 20
--
3.2. Experimental section 21
--
3.2.1. Materials 21
--
3.2.2. Synthesis of CoFe2O4 nanoparticles 21
--
3.2.3. Synthesis of Fe3O4 nanoparticles 22
--
3.2.4. Characterization 23
--
3.3. Results and discussion 23
--
3.4. Conclusions 33
--
Ⅳ. The synthesis of FePt and FePt/Fe3O4 nanoparticles 34
--
4.1. Introduction 34
--
4.2. Experimental section 36
--
4.2.1. Materials 36
--
4.2.2. Synthesis of FePt using thermal decomposition method 37
--
4.2.3. Cell culture and Cell viability 37
--
4.2.4. Characterization 39
--
4.3. Results and discussion 39
--
4.4. Conclusions 49
--
References 50
--
Summary 55
--
-
dc.format.extent 55 -
dc.language eng -
dc.publisher DGIST -
dc.subject Synthesis of magnetic nanoparticles -
dc.subject Fe3O4 -
dc.subject CoFe2O4 -
dc.subject FePt -
dc.title Shape and size controlled synthesis of FePt and Ferrite nanoparticles for bio-application -
dc.title.alternative 바이오 응용을 위한 크기, 형태 제어가 가능한 FePt와 Ferrite 나노 입자 합성 -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.2296137 -
dc.description.alternativeAbstract 최근 10년간 자성 나노 입자에 대한 연구가 활발하게 진행되어 왔고, 특히 바이오-메디컬 분야(자기공명영상 조영제, 발열치료, 약물전달 등)에서의 새로운 접근이 가능해지면서 많은 주목을 받고 있다. 바이오-메디컬 응용에 적합한 소재 개발이 중요한 부분으로 자리매김 하고 있고, 이에 발맞춰 다양한 자성 나노 입자의 합성은 매우 중요한 요소이며, 자성 나노 입자의 특성을 결정짓는 요소인 사이즈, 형태 등을 제어하는 기술이 핵심 연구 주제로 대두되고 있다. 본 논문에서는 바이오-메디컬 분야에서 많이 사용되고 있는 자성 나노 입자인 Ferrite(Fe3O4 and CoFe2O4 )와 alloy 입자 (FePt, FePt/ Fe3O4) 합성에 대한 연구를 진행하였다. 이번 실험에서 사용되었던 열분해와 환원 반응을 통한 자성 나노 입자 합성 방법은 온도, 시간, 용매, 계면활성제, 전구체의 양 조절 등의 다양한 실험 조건으로 수-수십 나노 사이즈, 나노 입자의 형태가 미세하게 제어가 가능한 방법으로 알려져 있다. 이 방법을 통해 50 ~ 100 nm 크기의 구형, 큐브형, 육각형의 형태를 가지며 80 emu/g의 포화 자화 값을 갖는 Ferrite(Fe3O4, CoFe2O4) 나노 입자와 5 ~ 10 nm 크기의 큐브 형태의 초상자성 alloy(FePt, FePt/ Fe3O4) 나노 입자를 합성하였다. 이를 X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), and Vibrating Sample Magnetometer (VSM) 으로 자성 나노 입자의 형태, 특성 등을 확인하였고 THP-1 세포 생존율 테스트를 통해 농도에 따른 자성 나노 입자의 생체적합성을 확인하였다. ⓒ 2016 DGIST -
dc.description.degree Master -
dc.contributor.department Emerging materials Science -
dc.contributor.coadvisor Lee, Jong Soo -
dc.date.awarded 2016. 8 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.date.accepted 2016-08-18 -
dc.contributor.alternativeDepartment 대학원 신물질과학전공 -
dc.contributor.affiliatedAuthor Eom, Yun Ji -
dc.contributor.affiliatedAuthor Kim, Cheol Gi -
dc.contributor.affiliatedAuthor Lee, Jong Soo -
dc.contributor.alternativeName 엄윤지 -
dc.contributor.alternativeName 김철기 -
dc.contributor.alternativeName 이종수 -
Files in This Item:
000002296137.pdf

000002296137.pdf

기타 데이터 / 3.03 MB / Adobe PDF download
Appears in Collections:
Department of Physics and Chemistry Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE