Cited 0 time in
Cited 0 time in
Exploring a novel atomic layer with extremely low latticce thermal conductivity: ZnPSe3 and its thermoelectrics
- Title
- Exploring a novel atomic layer with extremely low latticce thermal conductivity: ZnPSe3 and its thermoelectrics
- Authors
- 윤원석; 이재동
- DGIST Authors
- 이재동
- Issue Date
- 2018-10-26
- Citation
- 한국물리학회 2018년 가을학술논문발표회
- Type
- Conference
- Abstract
- We survey the thermodynamic stabilities and properties, electronic transports, and thermoelectric possibilities of two-dimensional (2D) ZnPS3 and ZnPSe3, belonging to transition-metal phosphorus trichalcogenides, by employing the first-principles electronic structure calculation. Our first-principles calculation accompanying ab initio molecular dynamics and phonon calculation predicts that a single-layer (1L-) ZnPSe3 would be thermodynamically stable and in addition electron and hole mobilities of 1L-ZnPSe3 amount to ~440 and ~400 cm2 V−1s−1, respectively, which are comparable to 1L-MoS2. More interestingly, the lattice thermal conductivity of 1L-ZnPSe3 is found to be lower than any other 2D material reported for thermoelectric material, which could reach the lowest known, i.e., ~0.13 W m−1K−1 at room temperature. In contrast, the thermoelectric figure of merit of the pristine 1L-ZnPSe3 falls into just ~0.8 in the optimal condition. Nevertheless, this is a very promising indication for a thermoelectric application of 1L-ZnPSe3 because other elements to determine the thermoelectric figure of merit could be possibly engineered through a manipulation of underlying electronic structures. With this finding, 1L-ZnPSe3 would be added as a novel promising candidate to a list of 2D thermoelectric materials.
- URI
- http://hdl.handle.net/20.500.11750/14696
- Publisher
- 한국물리학회
- Related Researcher
-
-
Lee, JaeDong
Light and Matter Theory Laboratory
-
Research Interests
Theoretical Condensed Matter Physics; Ultrafast Dynamics and Optics; Nonequilibrium Phenomena
- Files:
There are no files associated with this item.
- Collection:
- Department of Physics and ChemistryLight and Matter Theory Laboratory2. Conference Papers
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.