Detail View

Synthesis and electrochemical performance of electrostatic self-assembled nano-silicon@N-doped reduced graphene oxide/carbon nanofibers composite as anode material for lithium-ion batteries
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Cong, Ruye -
dc.contributor.author Park, Hyun-Ho -
dc.contributor.author Jo, Minsang -
dc.contributor.author Lee, Hochun -
dc.contributor.author Lee, Chang-Seop -
dc.date.accessioned 2021-09-27T09:30:08Z -
dc.date.available 2021-09-27T09:30:08Z -
dc.date.created 2021-08-26 -
dc.date.issued 2021-08 -
dc.identifier.citation Molecules, v.26, no.16, pp.4831 -
dc.identifier.issn 1420-3049 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/15325 -
dc.description.abstract Silicon-carbon nanocomposite materials are widely adopted in the anode of lithium-ion batteries (LIB). However, the lithium ion (Li+) transportation is hampered due to the significant accumulation of silicon nanoparticles (Si) and the change in their volume, which leads to decreased battery performance. In an attempt to optimize the electrode structure, we report on a self-assembly synthesis of silicon nanoparticles@nitrogen-doped reduced graphene oxide/carbon nanofiber (Si@N-doped rGO/CNF) composites as potential high-performance anodes for LIB through electrostatic attraction. A large number of vacancies or defects on the graphite plane are generated by N atoms, thus providing transmission channels for Li+ and improving the conductivity of the electrode. CNF can maintain the stability of the electrode structure and prevent Si from falling off the electrode. The three-dimensional composite structure of Si, N-doped rGO, and CNF can effectively buffer the volume changes of Si, form a stable solid electrolyte interface (SEI), and shorten the transmission distance of Li+ and the electrons, while also providing high conductivity and mechanical stability to the electrode. The Si@N-doped rGO/CNF electrode outperforms the Si@N-doped rGO and Si/rGO/CNF electrodes in cycle performance and rate capability, with a reversible specific capacity reaching 1276.8 mAh/g after 100 cycles and a Coulomb efficiency of 99%. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. -
dc.language English -
dc.publisher MDPI AG -
dc.title Synthesis and electrochemical performance of electrostatic self-assembled nano-silicon@N-doped reduced graphene oxide/carbon nanofibers composite as anode material for lithium-ion batteries -
dc.type Article -
dc.identifier.doi 10.3390/molecules26164831 -
dc.identifier.wosid 000690141900001 -
dc.identifier.scopusid 2-s2.0-85112536840 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.identifier.bibliographicCitation Cong, Ruye. (2021-08). Synthesis and electrochemical performance of electrostatic self-assembled nano-silicon@N-doped reduced graphene oxide/carbon nanofibers composite as anode material for lithium-ion batteries. doi: 10.3390/molecules26164831 -
dc.description.journalClass 1 -
dc.citation.publicationname Molecules -
dc.contributor.nonIdAuthor Cong, Ruye -
dc.contributor.nonIdAuthor Park, Hyun-Ho -
dc.contributor.nonIdAuthor Jo, Minsang -
dc.contributor.nonIdAuthor Lee, Chang-Seop -
dc.identifier.citationVolume 26 -
dc.identifier.citationNumber 16 -
dc.identifier.citationStartPage 4831 -
dc.identifier.citationTitle Molecules -
dc.description.isOpenAccess Y -
dc.subject.keywordAuthor Anode material -
dc.subject.keywordAuthor Carbon nanofibers -
dc.subject.keywordAuthor Lithium-ion battery -
dc.subject.keywordAuthor Nitrogen-doped graphene -
dc.subject.keywordAuthor Silicon nanoparticles -
dc.subject.keywordPlus CARBON NANOFIBERS -
dc.subject.keywordPlus OXIDE -
dc.subject.keywordPlus SI -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus ELECTRODE -
dc.subject.keywordPlus MEMBRANE -
dc.subject.keywordPlus SHELL -
dc.subject.keywordPlus FILM -
dc.contributor.affiliatedAuthor Cong, Ruye -
dc.contributor.affiliatedAuthor Park, Hyun-Ho -
dc.contributor.affiliatedAuthor Jo, Minsang -
dc.contributor.affiliatedAuthor Lee, Hochun -
dc.contributor.affiliatedAuthor Lee, Chang-Seop -
Show Simple Item Record

File Downloads

공유

qrcode
공유하기

Related Researcher

이호춘
Lee, Hochun이호춘

Department of Energy Science and Engineering

read more

Total Views & Downloads