Detail View

Machine Learning-Enabled Power Scheduling in IoT-Based Smart Cities
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Awan, Nabeela -
dc.contributor.author Khan, Salman -
dc.contributor.author Rahmani, Mohammad Khalid Imam -
dc.contributor.author Tahir, Muhammad -
dc.contributor.author Alam, Nur -
dc.contributor.author Alturki, Ryan -
dc.contributor.author Ullah, Ihsan -
dc.date.accessioned 2021-10-11T12:00:07Z -
dc.date.available 2021-10-11T12:00:07Z -
dc.date.created 2021-03-25 -
dc.date.issued 2021-02 -
dc.identifier.citation Computers, Materials and Continua, v.67, no.2, pp.2447 - 2462 -
dc.identifier.issn 1546-2218 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/15453 -
dc.description.abstract Recent advancements in hardware and communication technologies have enabled worldwide interconnection using the internet of things (IoT). The IoT is the backbone of smart city applications such as smart grids and green energy management. In smart cities, the IoT devices are used for linking power, price, energy, and demand information for smart homes and home energy management (HEM) in the smart grids. In complex smart grid-connected systems, power scheduling and secure dispatch of information are the main research challenge. These challenges can be resolved through various machine learning techniques and data analytics. In this paper, we have proposed a particle swarm optimization based machine learning algorithm known as a collaborative execute-before-after dependency-based requirement, for the smart grid. The proposed collaborative execute-before-after dependency-based requirement algorithm works in two phases, analysis and assessment of the requirements of end-users and power distribution companies. In the first phases, a fixed load is adjusted over a period of 24 h, and in the second phase, a randomly produced population load for 90 days is evaluated using particle swarm optimization. The simulation results demonstrate that the proposed algorithm performed better in terms of percentage cost reduction, peak to average ratio, and power variance mean ratio than particle swarm optimization and inclined block rate. © 2021 Tech Science Press. All rights reserved. -
dc.language English -
dc.publisher Tech Science Press -
dc.title Machine Learning-Enabled Power Scheduling in IoT-Based Smart Cities -
dc.type Article -
dc.identifier.doi 10.32604/cmc.2021.014386 -
dc.identifier.wosid 000616713000031 -
dc.identifier.scopusid 2-s2.0-85102502890 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.identifier.bibliographicCitation Awan, Nabeela. (2021-02). Machine Learning-Enabled Power Scheduling in IoT-Based Smart Cities. doi: 10.32604/cmc.2021.014386 -
dc.description.journalClass 1 -
dc.citation.publicationname Computers, Materials and Continua -
dc.contributor.nonIdAuthor Awan, Nabeela -
dc.contributor.nonIdAuthor Khan, Salman -
dc.contributor.nonIdAuthor Rahmani, Mohammad Khalid Imam -
dc.contributor.nonIdAuthor Tahir, Muhammad -
dc.contributor.nonIdAuthor Alam, Nur -
dc.contributor.nonIdAuthor Alturki, Ryan -
dc.contributor.nonIdAuthor Ullah, Ihsan -
dc.identifier.citationVolume 67 -
dc.identifier.citationNumber 2 -
dc.identifier.citationStartPage 2447 -
dc.identifier.citationEndPage 2462 -
dc.identifier.citationTitle Computers, Materials and Continua -
dc.description.isOpenAccess Y -
dc.subject.keywordAuthor PSO -
dc.subject.keywordAuthor IBR -
dc.subject.keywordAuthor machine learning -
dc.subject.keywordAuthor IoT -
dc.subject.keywordAuthor smart cities -
dc.subject.keywordAuthor CDBR -
dc.subject.keywordPlus MANAGEMENT STRATEGY -
dc.contributor.affiliatedAuthor Awan, Nabeela -
dc.contributor.affiliatedAuthor Khan, Salman -
dc.contributor.affiliatedAuthor Rahmani, Mohammad Khalid Imam -
dc.contributor.affiliatedAuthor Tahir, Muhammad -
dc.contributor.affiliatedAuthor Alam, Nur -
dc.contributor.affiliatedAuthor Alturki, Ryan -
dc.contributor.affiliatedAuthor Ullah, Ihsan -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads