Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lee, Sungwoo -
dc.contributor.author Hong, Deokgi -
dc.contributor.author Kim, Ji-Yong -
dc.contributor.author Nam, Dae-Hyun -
dc.contributor.author Kang, Sungwoo -
dc.contributor.author Han, Seungwu -
dc.contributor.author Joo, Young-Chang -
dc.contributor.author Lee, Gun-Do -
dc.date.accessioned 2021-10-12T06:00:05Z -
dc.date.available 2021-10-12T06:00:05Z -
dc.date.created 2021-06-14 -
dc.date.issued 2021-05 -
dc.identifier.issn 2574-0970 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/15472 -
dc.description.abstract Molybdenum disulfide (MoS2) has attracted much attention as a material to replace the noble-metal-based hydrogen evolution reaction catalyst. Polymorphism is an important factor in improving the catalytic performance of transition-metal dichalcogenides (TMDs) including MoS2. Several methods have been proposed to synthesize the 1T/1T′ phase with high catalytic efficiency, and a gas-solid reaction has recently been proposed as one of the alternative methods. However, the atomic-scale reaction mechanism between gas molecules and MoS2 has not been clarified. Here, we report a detailed atomic-scale mechanism of structural phase transition of MoS2 nanocrystals under reaction with CO gas molecules using density functional theory calculations. We confirm that the evaporation of S atoms at the edge is much faster than the evaporation at the basal plane of MoS2 nanocrystals. It is found that the S evaporation at the edge induces the structural change from 2H to 1T/1T′ in the basal plane of nanocrystals. The structural change is also attributed to the chain reaction due to the sequential migration of S atoms to the octahedral sites, which is energetically favorable. The present results provide a guideline for the gas-solid reaction-based phase control of TMDs including MoS2 to synthesize a high-performance catalyst. © 2021 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Density Functional Theory Study of Edge-Induced Atomic-Scale Structural Phase Transitions of MoS2Nanocrystals: Implications for a High-Performance Catalyst -
dc.type Article -
dc.identifier.doi 10.1021/acsanm.1c00828 -
dc.identifier.wosid 000657373800123 -
dc.identifier.scopusid 2-s2.0-85106503858 -
dc.identifier.bibliographicCitation ACS Applied Nano Materials, v.4, no.5, pp.5496 - 5502 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor carbon monoxide -
dc.subject.keywordAuthor catalyst -
dc.subject.keywordAuthor DFT -
dc.subject.keywordAuthor HER -
dc.subject.keywordAuthor MoS2 -
dc.subject.keywordAuthor nanocrystal -
dc.subject.keywordAuthor structural phase transition -
dc.subject.keywordPlus Structural phase transition -
dc.subject.keywordPlus Transition metal dichalcogenides -
dc.subject.keywordPlus Density functional theory -
dc.subject.keywordPlus Atoms -
dc.subject.keywordPlus Catalysts -
dc.subject.keywordPlus Density of gases -
dc.subject.keywordPlus Evaporation -
dc.subject.keywordPlus Layered semiconductors -
dc.subject.keywordPlus Molecules -
dc.subject.keywordPlus Molybdenum compounds -
dc.subject.keywordPlus Nanocrystals -
dc.subject.keywordPlus Polymorphism -
dc.subject.keywordPlus Precious metals -
dc.subject.keywordPlus Sulfur compounds -
dc.subject.keywordPlus Atomic-scale mechanisms -
dc.subject.keywordPlus Catalytic efficiencies -
dc.subject.keywordPlus Catalytic performance -
dc.subject.keywordPlus Density functional theory studies -
dc.subject.keywordPlus Gas-solid reaction -
dc.subject.keywordPlus Molybdenum disulfide -
dc.citation.endPage 5502 -
dc.citation.number 5 -
dc.citation.startPage 5496 -
dc.citation.title ACS Applied Nano Materials -
dc.citation.volume 4 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Renewable Energy Conversion Materials Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE