Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lee, Jeonghyeop -
dc.contributor.author Won, Eun-Seo -
dc.contributor.author Kim, Dong-Min -
dc.contributor.author Kim, Hyunchul -
dc.contributor.author Kwon, Bomee -
dc.contributor.author Park, Kyobin -
dc.contributor.author Jo, Seunghyeon -
dc.contributor.author Lee, Suyeon -
dc.contributor.author Lee, Jong-Won -
dc.contributor.author Lee, Kyu Tae -
dc.date.accessioned 2021-10-15T06:30:16Z -
dc.date.available 2021-10-15T06:30:16Z -
dc.date.created 2021-08-05 -
dc.date.issued 2021-07 -
dc.identifier.issn 1944-8244 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/15507 -
dc.description.abstract Li metal batteries have been considered a promising alternative to Li-ion batteries because of the high theoretical capacity of the Li metal. There have been remarkable improvements in the electrochemical performance of Li metal electrodes, although the current Li metal technology is not sufficiently practical in terms of cycle performance, safety, and volume change during cycling. Herein, the role of pore size distribution in the Li metal plating behavior of porous frameworks is clarified to attain the ideal pore structure of the framework as a Li metal host. The monodisperse pore framework shows the conformal electrodeposition of the Li metal, whereas the pore size gradient framework exhibits the superconformal plating of the Li metal. The conformal and superconformal electrodepositions of the Li metal are elucidated in terms of variations along the pore depth direction in the charge-transfer resistance on the pore walls and the ionic resistance of electrolytes confined in pores. The pore size gradient framework also shows excellent electrochemical performance, such as stable capacity retention over 760 cycles with 0.5 mAh cm-2 at 2 mA cm-2. These findings provide fundamental insights into strategies to improve the electrochemical performance of porous frameworks for Li metal batteries. © 2021 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Three-Dimensional Porous Frameworks for Li Metal Batteries: Superconformal versus Conformal Li Growth -
dc.type Article -
dc.identifier.doi 10.1021/acsami.1c07856 -
dc.identifier.wosid 000677540900042 -
dc.identifier.scopusid 2-s2.0-85111175923 -
dc.identifier.bibliographicCitation ACS Applied Materials & Interfaces, v.13, no.28, pp.33056 - 33065 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor lithium dendrite -
dc.subject.keywordAuthor lithium metal -
dc.subject.keywordAuthor pore structure -
dc.subject.keywordAuthor superconformal electrodeposition -
dc.subject.keywordAuthor three-dimensional porous framework -
dc.subject.keywordPlus Metals -
dc.subject.keywordPlus Charge transfer -
dc.subject.keywordPlus Electrodeposition -
dc.subject.keywordPlus Electrodes -
dc.subject.keywordPlus Lithium-ion batteries -
dc.subject.keywordPlus Plating -
dc.subject.keywordPlus Pore size -
dc.subject.keywordPlus Pore structure -
dc.subject.keywordPlus Capacity retention -
dc.subject.keywordPlus Charge transfer resistance -
dc.subject.keywordPlus Cycle performance -
dc.subject.keywordPlus Electrochemical performance -
dc.subject.keywordPlus Ionic resistance -
dc.subject.keywordPlus Superconformal electrodeposition -
dc.subject.keywordPlus Superconformal plating -
dc.subject.keywordPlus Theoretical capacity -
dc.citation.endPage 33065 -
dc.citation.number 28 -
dc.citation.startPage 33056 -
dc.citation.title ACS Applied Materials & Interfaces -
dc.citation.volume 13 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Laboratory for Electrochemical Energy Materials and Interfaces 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE