Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Seo, Jungyeun -
dc.contributor.author Hajra, Sugato -
dc.contributor.author Sahu, Manisha -
dc.contributor.author Kim, Hoe Joon -
dc.date.accessioned 2021-10-17T02:30:02Z -
dc.date.available 2021-10-17T02:30:02Z -
dc.date.created 2021-08-26 -
dc.date.issued 2021-12 -
dc.identifier.issn 0167-577X -
dc.identifier.uri http://hdl.handle.net/20.500.11750/15542 -
dc.description.abstract Triboelectric nanogenerators (TENG) can convert the waste mechanical energy into useful electrical energy and act as a sustainable power source for micro/nanoelectronics. The utilization of advanced surface designs and materials compositions can further enhance the performance of TENGs. A single-electrode mode TENG with cilia microstructures (C-TENG, abbreviated further) was fabricated from polydimethylsiloxane-carbonyl iron (PDMS-Fe) composite by using a simple and fast magnetic field-guided method and its energy harvesting performance was evaluated. The structures, electrical properties, and surface roughness were compared between the flat and cilia-formed PDMS-Fe composites. The single-electrode mode TENG based on PDMS-Fe 10 wt% gives an open-circuit voltage of 70 V, the peak to peak current output of 250nA, and the power density of 2.75 μW/cm2 at 30 MΩ. Further, the ion injection was applied to the PDMS-Fe 10 wt% composite films using an antistatic gun, and it doubles the voltage output of the device. C-TENG can convert biomechanical energy (i.e. wind blowing and finger tapping) into an electrical output. In addition, the powering of a calculator was showed by charging a commercial capacitor using a bridge rectifier circuit. © 2021 Elsevier B.V. -
dc.language English -
dc.publisher Elsevier -
dc.title Effect of cilia microstructure and ion injection upon single-electrode triboelectric nanogenerator for effective energy harvesting -
dc.type Article -
dc.identifier.doi 10.1016/j.matlet.2021.130674 -
dc.identifier.wosid 000697763300013 -
dc.identifier.scopusid 2-s2.0-85112485249 -
dc.identifier.bibliographicCitation Materials Letters, v.304, pp.130674 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Cilia -
dc.subject.keywordAuthor Energy Harvesting -
dc.subject.keywordAuthor Ion Injection -
dc.subject.keywordAuthor Microstructure -
dc.subject.keywordAuthor Triboelectric -
dc.subject.keywordPlus Silicones -
dc.subject.keywordPlus Surface roughness -
dc.subject.keywordPlus Triboelectricity -
dc.subject.keywordPlus Cilium -
dc.subject.keywordPlus Effective energy -
dc.subject.keywordPlus Electrical energy -
dc.subject.keywordPlus Energy -
dc.subject.keywordPlus Ion injection -
dc.subject.keywordPlus Mechanical energies -
dc.subject.keywordPlus Nanogenerators -
dc.subject.keywordPlus Performance -
dc.subject.keywordPlus Single electrodes -
dc.subject.keywordPlus Triboelectric -
dc.subject.keywordPlus Composite films -
dc.subject.keywordPlus Electric rectifiers -
dc.subject.keywordPlus Electrodes -
dc.subject.keywordPlus Ions -
dc.subject.keywordPlus Microchannels -
dc.subject.keywordPlus Microstructure -
dc.subject.keywordPlus Open circuit voltage -
dc.citation.startPage 130674 -
dc.citation.title Materials Letters -
dc.citation.volume 304 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Materials Science, Multidisciplinary; Physics, Applied -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Robotics and Mechatronics Engineering Nano Materials and Devices Lab 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE