Detail View

Effect of cilia microstructure and ion injection upon single-electrode triboelectric nanogenerator for effective energy harvesting
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Effect of cilia microstructure and ion injection upon single-electrode triboelectric nanogenerator for effective energy harvesting
Issued Date
2021-12
Citation
Seo, Jungyeun. (2021-12). Effect of cilia microstructure and ion injection upon single-electrode triboelectric nanogenerator for effective energy harvesting. Materials Letters, 304, 130674. doi: 10.1016/j.matlet.2021.130674
Type
Article
Author Keywords
CiliaEnergy HarvestingIon InjectionMicrostructureTriboelectric
Keywords
SiliconesSurface roughnessTriboelectricityCiliumEffective energyElectrical energyEnergyIon injectionMechanical energiesNanogeneratorsPerformanceSingle electrodesTriboelectricComposite filmsElectric rectifiersElectrodesIonsMicrochannelsMicrostructureOpen circuit voltage
ISSN
0167-577X
Abstract
Triboelectric nanogenerators (TENG) can convert the waste mechanical energy into useful electrical energy and act as a sustainable power source for micro/nanoelectronics. The utilization of advanced surface designs and materials compositions can further enhance the performance of TENGs. A single-electrode mode TENG with cilia microstructures (C-TENG, abbreviated further) was fabricated from polydimethylsiloxane-carbonyl iron (PDMS-Fe) composite by using a simple and fast magnetic field-guided method and its energy harvesting performance was evaluated. The structures, electrical properties, and surface roughness were compared between the flat and cilia-formed PDMS-Fe composites. The single-electrode mode TENG based on PDMS-Fe 10 wt% gives an open-circuit voltage of 70 V, the peak to peak current output of 250nA, and the power density of 2.75 μW/cm2 at 30 MΩ. Further, the ion injection was applied to the PDMS-Fe 10 wt% composite films using an antistatic gun, and it doubles the voltage output of the device. C-TENG can convert biomechanical energy (i.e. wind blowing and finger tapping) into an electrical output. In addition, the powering of a calculator was showed by charging a commercial capacitor using a bridge rectifier circuit. © 2021 Elsevier B.V.
URI
http://hdl.handle.net/20.500.11750/15542
DOI
10.1016/j.matlet.2021.130674
Publisher
Elsevier
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

김회준
Kim, Hoe Joon김회준

Department of Robotics and Mechatronics Engineering

read more

Total Views & Downloads