Cited 0 time in webofscience Cited 0 time in scopus

Physicochemical nature of polarization components limiting the fast operation of Li-ion batteries

Title
Physicochemical nature of polarization components limiting the fast operation of Li-ion batteries
Authors
Kang, JunsikKoo, BonhyeopKang, SeokbumLee, Hochun
DGIST Authors
Kang, Junsik; Koo, Bonhyeop; Kang, Seokbum; Lee, Hochun
Issue Date
2021-12
Citation
Chemical Physics Reviews, 2(4), 041307-041307
Type
Article
ISSN
2688-4070
Abstract
High-power Li-ion batteries (LIBs) are widely used in electric vehicles and grid storage applications and are therefore in high demand; however, their realization requires a fundamental understanding of electrochemical polarization arising during charge/discharge reactions. To date, electrochemical polarization is poorly understood because of the complexity of experimental measurements and the lack of a proper theory of the microscopic structure of the electrolyte solution and complicated interactions among solution species. The present work comprehensively reviews the components of this polarization and discusses their physicochemical nature, focusing on those due to (i) Ohmic polarization in the electrolyte, (ii) interfacial charge transfer, (iii) concentration gradients in solid and electrolyte phases, (iv) ion transport within the electrode pores, and (v) the electronic resistance of the composite electrode and current collector interface. We also briefly touch on today's understanding of the microscopic structure of LIB electrolytes and the experimental analysis of polarization sources, subsequently addressing the relative contributions of polarization components and their dependence on diverse parameters, for example, electrode/electrolyte materials and the dimensional factors of composite electrodes (thickness/porosity/tortuosity). Thus, this review is expected to assist the setting of correct battery R&D targets and aid the identification of delusive studies that lack a comprehensive understanding of the physicochemical nature of electrochemical polarization and therefore report unrealistic high-power performances. © 2021 Author(s). Published under an exclusive license by AIP Publishing.
URI
http://hdl.handle.net/20.500.11750/16050
DOI
10.1063/5.0068493
Publisher
AIP Publishing
Related Researcher
  • Author Lee, Hochun Electrochemistry Laboratory for Sustainable Energy(ELSE)
  • Research Interests Lithium-ion batteries; Novel Materials for rechargeable batteries; Novel energy conversion;storage systems; Electrochemistry; 리튬이차전지; 이차전지용 신규 전극 및 전해액; 신규 에너지변환 및 저장 시스템; 전기화학
Files:
There are no files associated with this item.
Collection:
Department of Energy Science and EngineeringElectrochemistry Laboratory for Sustainable Energy(ELSE)1. Journal Articles


qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE