Transition metal-reactive oxygen adducts, such as metal-superoxo, -peroxo, -hydroperoxo, -oxo and -hydroxo, have been considered as key reactive intermediates in various metabolic functions by metalloenzymes. In bioinorganic chemistry, synthetic model complexes which replicate the active sites of metalloenzymes have been prepared to investigate electronic and geometric properties and reactivities of the metal-reactive oxygen intermediates. In particular, high valent metal-oxo and metal-hydroxo moieties have received much interest due to their relevance to the biological system and potential application as oxidation catalysts. In this dissertation, we describe novel manganese-reactive oxygen with various spectrometric analyses and crystallographic data. In chapter 1, it is revealed that the manganese(IV)-bis(hydroxo) complex can oxidize the naphthalene in the presence of acid. Kinetic studies suggest that the naphthalene oxidation occurs through a rate-determining proton-coupled electron transfer process. In chapter 2, the conversion of manganese(IV)-bis(hydroxo) complex to a unique manganese(III)-iodosylarene intermediate is described. This is the first example of a mononuclear nonheme manganese(III)-iodosylarene species. Electrophilic reactivity of a manganese(III)-iodosylarene intermediate is examined in the C-H bond activation, sulfoxidation and epoxidation. In chapter 3 and 4, the reaction mechanism of novel manganese(III)-iodosylarene intermediate in the C-H bond activation is further analyzed through theoretical calculations, which reveals the overall hydride transfer pathway in the rate-determining step. The hydride transfer reactivity of the manganese(III)-iodosylarene complex is additionally confirmed from the reaction with NADH analogues.|금속-수퍼옥소, -퍼옥소, –하이드로퍼옥소, -옥소 그리고 -하이드록소 종과 같은 전이금속–활성산소 복합체는 생체 내에서 금속효소에 의한 다양한 물질대사적 반응에서의 반응 중간체로서 알려져 있다. 생무기 화학분야에서는, 이러한 전이금속-활성산소 복합체의 전자 및 기하학적 구조와 다양한 산화반응성 기작에 대한 이해를 위해서, 금속효소의 활성장소를 모방하여 다양한 모델 착물들을 합성하여 연구해왔다. 특히, 금속-옥소종과 금속-하이드록소종은 생체 시스템에서의 관련성과 응용 산화 촉매로서의 가능성으로 인하여 많은 관심을 받고 있다. 본 학위논문에서는 희귀한 망간-활성 산소 화합물의 합성을 통해 분광학 및 결정학 분석과 다양한 산화반응성 연구를 보고하고자 한다. 제 1장 에서는 거대고리배위자를 통해 4가의 망간-하이드록소 화합물을 합성하고 산-결합 전자 전달 반응을 통하여 나프탈렌을 산화시킬 수 있음을 보고하였다. 제 2장에서는 단핵의 3가 망간-요오드실아렌 화합물에 대한 합성과 분광학적 특징을 처음으로 보고하였다. 또한 3가의 망간-요오드실아렌 화합물에 대한 산화반응성도 다루었다. 제 3장과 4장에서는 앞서 합성한 3가의 망간-요오드실아렌 화합물의 유기기질에 대한 탄소-수소 결합 활성화 반응을 밀도범함수이론을 통하여 보다 자세하게 연구하였다. 이를 통해 기질의 탄소-수소 결합에서 수소화 이온 형태로 망간-요오드실아렌 화합물로 전달된다는 것을 발견하였다. 이러한 망간-요오드실아렌 화합물의 수소화 전달 반응은 NADH 유사체와의 반응을 통해 재확인 되었다. 이러한 연구 결과는 금속 효소에 대한 이해를 넓혀줄 수 있을 뿐만 아니라, 신약 개발 및 고효율 촉매 개발의 밑바탕이 될 것으로 기대된다.
Table Of Contents
General Introduction 1 Ⅰ. Oxidation of Naphthalene with a Manganese(IV) Bis(hydroxo) Complex in the Presence of Acid 12 1.1. Abstract. 12 1.2. Introduction. 13 1.3. Results and Discussion 15 1.4. Conclusion 42 1.5. Experimental Section 43 1.6. References. 50 Ⅱ. Structure and Reactivity of a Mononuclear Nonheme Manganese(III) Iodosylbenzene Complex 55 2.1. Abstract 55 2.2. Introduction 56 2.3. Results and Discussion. 59 2.4. Conclusion 85 2.5. Experimental Section 86 2.6. References 93 Ⅲ. Theoretical Study on the Aliphatic C-H Bond Activation by a Mononuclear Manganese(III) Iodosylbenzene Complex 97 3.1. Abstract 97 3.2. Introduction 98 3.3. Results and Discussion. 99 3.4. Conclusion 113 3.5. Experimental Section. 114 3.6. References 116 Ⅳ. Hydride Transfer Reaction to a Mononuclear Manganese(III) Iodosylarene Complex 120 4.1. Abstract 120 4.2. Introduction 121 4.3. Results and Discussion. 124 4.4. Conclusion 136 4.5. Experimental Section. 137 4.6. References 140 Concluding Remarks 144 Acknowledgement 146