Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Baek, Seungho -
dc.contributor.author Kim, Junil -
dc.contributor.author Choo, Sooho -
dc.contributor.author Sen, Anamika -
dc.contributor.author Jang, Bongho -
dc.contributor.author Pujar, Pavan -
dc.contributor.author Kim, Sunkook -
dc.contributor.author Kwon, Hyuk-Jun -
dc.date.accessioned 2022-07-06T02:32:55Z -
dc.date.available 2022-07-06T02:32:55Z -
dc.date.created 2022-04-20 -
dc.date.issued 2022-05 -
dc.identifier.issn 2196-7350 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/16479 -
dc.description.abstract Molybdenum disulfide (MoS2) synthesis methods have become diverse and enable wafer-scale growth for high-performance optoelectronic applications. However, there has been limited research on the carrier transports of wafer-scale deposited MoS2 thin-film transistors (TFTs). In this paper, the first demonstration of the electron transport mechanism in top-gated polycrystalline crystalline MoS2 (poly-MoS2) TFTs grown by a wafer-scale deposition method is presented. The MoS2 is synthesized via radio frequency (RF) magnetron sputtering and gas flow chemical vapor sulfurization. A surface analysis is performed to determine the basic ingredients and grain size of the grown MoS2. Furthermore, the electrical properties and charge transport behaviors of the poly-MoS2 TFTs are characterized using current–voltage measurement at low temperatures (93–273 K). The extracted parameters (e.g., field-effect mobility, contact and channel resistance, activation energy, and hopping distance) and 2D Mott variable range hopping (VRH) of the poly-MoS2 TFTs support the notion that the primary mechanism of carrier transport in the poly-MoS2 TFTs involves thermally active hopping and grain effects. For advanced poly-MoS2-based devices, an increase of grain size will be the principal factor using the relationship between the grain size and electron hopping distance of poly-MoS2. © 2022 Wiley-VCH GmbH. -
dc.language English -
dc.publisher John Wiley and Sons Inc -
dc.title Low-Temperature Carrier Transport Mechanism of Wafer-Scale Grown Polycrystalline Molybdenum Disulfide Thin-Film Transistor Based on Radio Frequency Sputtering and Sulfurization -
dc.type Article -
dc.identifier.doi 10.1002/admi.202102360 -
dc.identifier.wosid 000778803400001 -
dc.identifier.scopusid 2-s2.0-85127478165 -
dc.identifier.bibliographicCitation Advanced Materials Interfaces, v.9, no.15 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor grains -
dc.subject.keywordAuthor low-temperature characterizations -
dc.subject.keywordAuthor molybdenum disulfides -
dc.subject.keywordAuthor thin film transistors -
dc.subject.keywordAuthor carrier transports -
dc.subject.keywordPlus MOS2 ATOMIC LAYERS -
dc.subject.keywordPlus VAPOR-PHASE GROWTH -
dc.subject.keywordPlus MONOLAYER MOS2 -
dc.subject.keywordPlus DEPOSITION -
dc.subject.keywordPlus NITRIDE -
dc.citation.number 15 -
dc.citation.title Advanced Materials Interfaces -
dc.citation.volume 9 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Electrical Engineering and Computer Science Advanced Electronic Devices Research Group(AEDRG) - Kwon Lab. 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE