Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Eunhee -
dc.contributor.author Yoo, Seung-Jun -
dc.contributor.author Moon, Cheil -
dc.contributor.author Nelson, Bradley J. -
dc.contributor.author Choi, Hongsoo -
dc.date.available 2017-05-11T01:47:26Z -
dc.date.created 2017-04-10 -
dc.date.issued 2015-06 -
dc.identifier.issn 0167-9317 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/1660 -
dc.description.abstract Most polymer-based biomedical implantable microscale devices have a smooth surface, so that cell seeding is suppressed in the absence of an adhesive material coating on the surface. SU-8 is a negative photoresist, and is widely used for the fabrication of micro-/nanoscale biomedical devices. A physical surface modification technique was introduced in this study to enhance cell viability and mobility on a SU-8 substrate. To characterize cell viability and mobility, four types of SU-8 substrate were prepared: flat bare substrate, poly-l-lysine (PLL)-coated flat bare substrate, nanoporous substrate, and PLL-coated nanoporous substrate. Rat pheochromocytoma (PC12) cells were cultured on these substrates, and nerve growth factor (NGF) was added to induce differentiation of the PC12 cells. On the seventh day of cell culture, PC12 cells on the nanoporous SU-8 substrate showed 24.3% cell differentiation (neurite outgrowth) versus 1.1% cell differentiation on the flat bare substrate. It was also found that cells had a tendency to move from a flat surface to a nanoporous region. These cellular activities on the nanoporous SU-8 substrate suggest that nanopores can be used to regulate cellular activities and can be applied to SU-8-based microscale biomedical devices. © 2015 Elsevier B.V. All rights reserved. -
dc.language English -
dc.publisher Elsevier B.V. -
dc.title SU-8-based nanoporous substrate for migration of neuronal cells -
dc.type Article -
dc.identifier.doi 10.1016/j.mee.2015.03.016 -
dc.identifier.scopusid 2-s2.0-84961327162 -
dc.identifier.bibliographicCitation Microelectronic Engineering, v.141, pp.173 - 177 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Nanosphere lithography (NSL) -
dc.subject.keywordAuthor Nanoporous surface -
dc.subject.keywordAuthor SU-8 -
dc.subject.keywordAuthor Cell viability -
dc.subject.keywordAuthor Cell mobility -
dc.subject.keywordPlus ACCELERATION -
dc.subject.keywordPlus Adhesion -
dc.subject.keywordPlus Amino ACIDs -
dc.subject.keywordPlus Biocompatibility -
dc.subject.keywordPlus Brain -
dc.subject.keywordPlus Cell Culture -
dc.subject.keywordPlus Cell Mobility -
dc.subject.keywordPlus Cell Viability -
dc.subject.keywordPlus CELLS -
dc.subject.keywordPlus Cytology -
dc.subject.keywordPlus DESIGN -
dc.subject.keywordPlus Fabrication -
dc.subject.keywordPlus Functional Polymers -
dc.subject.keywordPlus SU-8 -
dc.subject.keywordPlus Substrates -
dc.subject.keywordPlus HIPPOCAMPAL-NEURONS -
dc.subject.keywordPlus IN-VITRO -
dc.subject.keywordPlus Mobile Security -
dc.subject.keywordPlus Nano-Porous Surfaces -
dc.subject.keywordPlus Nanopores -
dc.subject.keywordPlus Nanoporous Surface -
dc.subject.keywordPlus Nanosphere Lithography -
dc.subject.keywordPlus Nanosphere Lithography (NSL) -
dc.subject.keywordPlus Nanostructures -
dc.subject.keywordPlus NEURAL INTERFACES -
dc.subject.keywordPlus Neurons -
dc.subject.keywordPlus Photoresists -
dc.subject.keywordPlus Porous Materials -
dc.citation.endPage 177 -
dc.citation.startPage 173 -
dc.citation.title Microelectronic Engineering -
dc.citation.volume 141 -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE