Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor 이윤구 - Jiwoo Gu - 2022-07-07T02:28:57Z - 2022-07-07T02:28:57Z - 2021 -
dc.identifier.uri en_US
dc.identifier.uri -
dc.description.abstract Mechano-electrical signal transductions based on interparticle quantum tunneling in polymer matrix composite system are widely used in various fields of biomedical healthcare monitoring, energy converting electronics, wearable devices, and human-machine interfaces due to the enormous potentials, enabling to realize integrated sensing electronic system. Piezoresistive type pressure sensors can be upmost candidates as befitting components for mechanical sensing devices thanks to the feasible merits. However, existing strategies for the formation of percolative signal transductions which are composed of non-featured electroactive particles have shown low sensitivity, membrane rigidity, and opaque device in despite of the fact that piezoresistive pressure sensors act as the key sensitizer layer in sensing system.
Here, we demonstrate synergistically combined spike-stimulated dendritic networks leading to the sig- nificantly reinforced-quantum electron tunneling effect between interparticle microchannels on geometrically dendritic surface. Polymer-based composite layer composed of electroactive metal particles and elastomeric matrix shows standout capability to transport electrical distribution and signal transduction from the dynamic external stimuli into digital signal driving multifunctional device performance on the human skin and display touch screen.
Our approach provides a remarkable improvements in sensing performance and operation stability such as ultrahigh sensitivity (160.3 kPa-1), device flexibility, and even high optical transparency (75.4 T%, 100). In addition, the flexible and transparent PU composite layers were demonstrated as a multifunctional pressure sensor for signal detection of the physical movement of the skin and a transparent touch panel with flexibility, mechanical/chemical stability (> 30000 cycles), and short response/recovery time (< 21 ms).
dc.description.statementofresponsibility N -
dc.description.tableofcontents I. Introduction 1
1.1 Emerging fields of soft electronics 1
1.1.1 Soft electronics for integrated sensing component 4
1.1.2 Piezoresistive pressure sensor in flexible electronic applications 5
1.2 Design nanomaterials for multifunctional sensing device 9
1.2.1 Novel active materials 1. Gold Nanostar 10
1.2.2 Novel active materials 2. Siliver Fractal Dendrite 11
1.2.3 Spike-stimulated Dendritic Networks (SDN) in polyurethane 12
II. Theoretical Background 14
2.1 Mechano-electrical signal transduction 14
2.1.1 Piezoresistive effects based on quantum electron tunneling 14
2.1.2 Neuro-mimetic percolative conducting microchannels 18
2.2 Active materials for piezoresistive type pressure sensor 19
2.2.1 (In)organic nanomaterials and conducting polymers 21
2.2.2 Polymeric composite for elastomeric matrix 21
2.3 Multifunctional nanocomposite film for practical applications 22
2.3.1 1 Mechanical, electrical, and optical properties of SDN-based composites 22
2.3.2 Flexible and transparent pressure sensor 23
III. Experimental section 24
3.1 Chemicals and materials 24
3.2 Synthetic method of electroactive fillers 24
3.3 Fabrication of SDN-based piezoresistive pressure sensor 26
3.4 Characterizations of the piezoresistive pressure sensor 28
3.5 Mechano-electrical measurement and device characteristics 29
3.6 Biomedical and optoelectrical applications 30
IV. Results and Discussion 32
4.1 Enhanced-quantum electron tunneling effect (QTE) 32
4.1.1 Optical and geometrical characteristics for SDN 34
4.1.2 3D finite element analysis of pressure sensor 38
4.1.3 Mechano-response behavior of nanocomposite film 39
4.2 SDN-based piezoresistive pressure sensor 49
4.2.1 Piezoresistive sensing performance 49
4.2.2 Electrochemical impedance analysis 53
4.2.3 Applicability for multifunctional pressure sensor 56
4.2.4 Mechanical and enviornmental stability 59
V. Applications and Demonstration 61
5.1 Biomedical applications for physiological signal processing 61
5.2 Force touch panel for transparent display 63
VI. Conclusion 66
References 67
Summary (in Korean) 73
dc.format.extent 73 -
dc.language eng -
dc.publisher DGIST -
dc.subject gold nanostar, silver fractal dendrite, interparticle quantum electron tunneling, ultrasensitive and flexible piezoresistive pressure sensor, 금 나노입자, 은 프랙탈 수지상, 강화된 입자간 양자터널링, 유연 및 투명압력센서 -
dc.title Spike-Stimulated Dendritic Networks with Interparticle Quantum Tunneling for Ultrasensitive, Transparent and Flexible Piezoresistive Pressure Sensor -
dc.title.alternative 초고민감, 투과성, 유연성 압전저항 방식의 압력센서를 위한 입자간 양자터널링 기반의 스파이크로 자극된 수지상 네트워크 -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.200000361620 -
dc.description.alternativeAbstract 나노스케일의 전도성 충진재 네트워크로 이루어진 고분자 매트릭스 내부의 양자터널링을 기반으로한 압전저항 방식의 압력센서는 집적화, 소형화가 가능한 시스템으로서 에너지하베스팅, 웨어러블 헬스케어기기, 기계-인간 인터페이스, 그리고 차세대 광전장치 분야에 높은 활용가능성으로 널리 사용되고 있다. 그러나 외부로부터 인가되는 다양한 형태의 자극감지를 위한 필수적인 레이어임에도 불구하고, 지금까지 널리 사용되어온 활성물질로 이루어진 전기신호전달망 형성을 위한 현재까지의 전략들은 낮은 압력감지민감도와 장치유연성을 보이고 있다.
본 논문에서는 기하학적 자기유사성 형태를 가지는 프랙탈 덴드라이트 은입자와 나노스타 형태의 금입자 간 강화된 입자간 전자터널링 효과를 일으키는 스파이크로 자극된 수지상 네트워크를 소개한다. 고분자 탄성체 내부에 구성된 금 나노입자와 은 마이크로입자로 이루어진 이종스케일의 하이브리드 활성물질로 이루어진 통전경로를 이용하는 전도성 나노복합체 감지층은 외부압력에 대한 전기적 분포를 저항변화를 통해 감지하고, 동적 접촉을 전기신호로 변환하여 피부 위에서 헬스케어용 유연전자소자로서 역할을 수행하는 다기능성 압력센서로서의 기능을 보여준다.
압력센서의 성능을 극대화 하기 위한 우리의 접근 방식은 높은 감지민감도(160.3 kPa-1), 기계적 유연성, 그리고 높은 광학투과도와 같은 감지 성능을 뛰어넘어 기존 다기능성 센서의 현저한 개선을 제공한다. 또한, 기계적, 화학적 안정성을 가지는 폴리우레탄 기반의 나노복합체층은 물리적 움직임에 대한 신호변환을 위한 압전저항 압력센서 및 플렉서블 특성, 기계적 안정성과 신속한 반응속도을 보여주는 디스플레이용 투명터치패널로 구현되어 차세대 압력센서로의 뛰어난 응용성을 보여주었다.
- Master -
dc.contributor.department Energy Science & Engineering -
dc.contributor.coadvisor Sohee Kim - 2021/02 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.EM 구78 202102 -
dc.contributor.alternativeDepartment 에너지공학전공 -
dc.embargo.liftdate 2024-02-29 -
dc.contributor.affiliatedAuthor Jiwoo Gu -
dc.contributor.affiliatedAuthor Youngu Lee -
dc.contributor.affiliatedAuthor Sohee Kim -
dc.contributor.alternativeName 구지우 -
dc.contributor.alternativeName Youngu Lee -
dc.contributor.alternativeName 김소희 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Theses Master


  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.