Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Min Jung -
dc.contributor.author Son, Hee Jin -
dc.contributor.author Kim, Yiseul -
dc.contributor.author Kweon, Hae Jin -
dc.contributor.author Suh, Byung Chang -
dc.contributor.author Lyall, Vijay -
dc.contributor.author Rhyu, Mee-Ra -
dc.date.available 2017-05-11T01:53:25Z -
dc.date.created 2017-04-10 -
dc.date.issued 2014-02 -
dc.identifier.issn 1932-6203 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/1682 -
dc.description.abstract TRPV1t, a variant of the transient receptor potential vanilloid-1 (TRPV1) has been proposed as a constitutively active, non-selective cation channel as a putative amiloride-insensitive salt taste receptor and shares many properties with TRPV1. Based on our previous chorda tympani taste nerve recordings in rodents and human sensory evaluations, we proposed that N- geranylcyclopropylcarboxamide (NGCC), a novel synthetic compound, acts as a salt taste enhancer by modulating the amiloride/benzamil-insensitive Na+ entry pathways. As an extension of this work, we investigated NGCC-induced human TRPV1 (hTRPV1) activation using a Ca2+-flux signaling assay in cultured cells. NGCC enhanced Ca2+ influx in hTRPV1-expressing cells in a dose-dependent manner (EC50 = 115 μM). NGCC-induced Ca 2+ influx was significantly attenuated by ruthenium red (RR; 30 mM), a non-specific blocker of TRP channels and capsazepine (CZP; 5 μM), a specific antagonist of TRPV1, implying that NGCC directly activates hTRPV1. TRPA1 is often co-expressed with TRPV1 in sensory neurons. Therefore, we also investigated the effects of NGCC on hTRPA1-expressing cells. Similar to hTRPV1, NGCC enhanced Ca2+ influx in hTRPA1-expressing cells (EC50 = 83.65 μM). The NGCC-induced Ca2+ influx in hTRPA1-expressing cells was blocked by RR (30 μM) and HC-030031 (100 μM), a specific antagonist of TRPA1. These results suggested that NGCC selectively activates TRPV1 and TRPA1 in cultured cells. These data may provide additional support for our previous hypothesis that NGCC interacts with TRPV1 variant cation channel, a putative amiloride/benzamil-insensitive salt taste pathway in the anterior taste receptive field. © 2014 Kim et al. -
dc.language English -
dc.publisher Public Library of Science -
dc.title Selective Activation of hTRPV1 by N-Geranyl Cyclopropylcarboxamide, an Amiloride-Insensitive Salt Taste Enhancer -
dc.type Article -
dc.identifier.doi 10.1371/journal.pone.0089062 -
dc.identifier.scopusid 2-s2.0-84895869391 -
dc.identifier.bibliographicCitation PLoS ONE, v.9, no.2 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordPlus CHORDA TYMPANI RESPONSES -
dc.subject.keywordPlus ION CHANNELS -
dc.subject.keywordPlus SOUR TASTE -
dc.subject.keywordPlus DIETARY-SODIUM -
dc.subject.keywordPlus C57BL/6J MICE -
dc.subject.keywordPlus TRPA1 -
dc.subject.keywordPlus RECEPTOR -
dc.subject.keywordPlus TRANSDUCTION -
dc.subject.keywordPlus HUMANS -
dc.subject.keywordPlus TRPV1 -
dc.citation.number 2 -
dc.citation.title PLoS ONE -
dc.citation.volume 9 -
Files in This Item:
10.1371_journal.pone.0089062.pdf

10.1371_journal.pone.0089062.pdf

기타 데이터 / 788.18 kB / Adobe PDF download
Appears in Collections:
Department of Brain Sciences Laboratory of Brain Signal and Synapse Research 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE