Detail View

DC Field Value Language
dc.contributor.author Park, Seong Jun -
dc.contributor.author Shin, Y.-K. -
dc.contributor.author Yoon, J.-Y. -
dc.contributor.author Nam, K.-H. -
dc.contributor.author Munashingha, P.R. -
dc.contributor.author Park, S. -
dc.contributor.author Park, S.-Y. -
dc.contributor.author Kim, S. -
dc.contributor.author Lee, Juhwan -
dc.contributor.author Seo, Min Jae -
dc.contributor.author Yu, W. -
dc.contributor.author Seo, Y.-S. -
dc.contributor.author Chang, I. -
dc.date.accessioned 2022-10-26T08:00:14Z -
dc.date.available 2022-10-26T08:00:14Z -
dc.date.created 2022-03-18 -
dc.date.issued 2022-04 -
dc.identifier.issn 0006-3495 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/16936 -
dc.description.abstract Polymerase chain reaction (PCR) is a powerful tool to diagnose infectious diseases. Uracil DNA glycosylase (UDG) is broadly used to remove carryover contamination in PCR. However, UDG can contribute to false negative results when not inactivated completely, leading to DNA degradation during the amplification step. In this study, we designed novel thermolabile UDG derivatives by supercomputing molecular dynamic simulations and residual network analysis. Based on enzyme activity analysis, thermolability, thermal stability, and biochemical experiments of Escherichia coli-derived UDG and 22 derivatives, we uncovered that the UDG D43A mutant eliminated the false negative problem, demonstrated high efficiency, and offered great benefit for use in PCR diagnosis. We further obtained structural and thermodynamic insights into the role of the D43A mutation, including perturbed protein structure near D43; weakened pairwise interactions of D43 with K42, N46, and R80; and decreased melting temperature and native fraction of the UDG D43A mutant compared with wild-type UDG. © 2022 Biophysical Society -
dc.language English -
dc.publisher Biophysical Society -
dc.title Computational design of a thermolabile uracil-DNA glycosylase of Escherichia coli -
dc.type Article -
dc.identifier.doi 10.1016/j.bpj.2022.02.027 -
dc.identifier.wosid 000784358200015 -
dc.identifier.scopusid 2-s2.0-85125627255 -
dc.identifier.bibliographicCitation Park, Seong Jun. (2022-04). Computational design of a thermolabile uracil-DNA glycosylase of Escherichia coli. Biophysical Journal, 121(7), 1276–1288. doi: 10.1016/j.bpj.2022.02.027 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus FOLDING KINETICS -
dc.subject.keywordPlus PROTEIN -
dc.subject.keywordPlus PCR -
dc.subject.keywordPlus EXPRESSION -
dc.subject.keywordPlus SYNCHRONIZATION -
dc.subject.keywordPlus AMPLIFICATION -
dc.subject.keywordPlus PURIFICATION -
dc.subject.keywordPlus CLONING -
dc.subject.keywordPlus MOLECULAR-DYNAMICS -
dc.subject.keywordPlus CARRYOVER CONTAMINATION -
dc.citation.endPage 1288 -
dc.citation.number 7 -
dc.citation.startPage 1276 -
dc.citation.title Biophysical Journal -
dc.citation.volume 121 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Biophysics -
dc.relation.journalWebOfScienceCategory Biophysics -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

유우경
Yu, Wookyung유우경

Department of Brain Sciences

read more

Total Views & Downloads