Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lim, Minhong -
dc.contributor.author Kim, Suhwan -
dc.contributor.author Kang, Junsik -
dc.contributor.author Jin, Dahee -
dc.contributor.author An, Hyeongguk -
dc.contributor.author Lee, Hyuntae -
dc.contributor.author Park, Joonam -
dc.contributor.author Lee, Mingyu -
dc.contributor.author Seo, Jiyeon -
dc.contributor.author Lee, Hochun -
dc.contributor.author Lee, Yong Min -
dc.contributor.author Lee, Hongkyung -
dc.date.accessioned 2022-10-31T08:00:06Z -
dc.date.available 2022-10-31T08:00:06Z -
dc.date.created 2022-07-18 -
dc.date.issued 2022-10 -
dc.identifier.issn 1616-301X -
dc.identifier.uri http://hdl.handle.net/20.500.11750/16977 -
dc.description.abstract Inhibiting uneven dendritic Li electroplating is crucial for the safe and stable cycling of Li metal batteries (LMBs). Homogeneous and fast Li+ transport towards the Li surface is required for uniform and dendrite-free deposition. However, the traditional ionic transport of static liquid electrolytes involving electromigration and molecular diffusion can trigger a greater disparity in the Li concentration over the Li surface, leading to irregular dendrite growth. Here, a convective Li+ transfer for suppressing dendrite growth through magnetic nanospinbar (NSB)-dispersed colloidal electrolytes is presented. An ultrahigh-aspect-ratio NSB consisting of a paramagnetic Fe3O4 nanoparticle array and silica outer coating is synthesized. Manipulating the external electromagnetic force can remotely control the rotation of individual NSBs without dispersion failure, thereby generating mesoscale turbulence inside the cells. Regardless of the electrolyte composition, rotating the NSB can reduce the Li+ diffusion layer thickness from the bulk and evenly redistribute the Li+ flux over the Li surface, thereby suppressing Li dendrite growth. The NSB-dispersed electrolyte with advanced salt/solvent compositions demonstrates stable cycling of LMBs over 600 cycles with 70% capacity retention, thereby outperforming the NSB-free cell. -
dc.language English -
dc.publisher John Wiley & Sons Ltd. -
dc.title Dynamic Ionic Transport Actuated by Nanospinbar-Dispersed Colloidal Electrolytes Toward Dendrite-Free Electrodeposition -
dc.type Article -
dc.identifier.doi 10.1002/adfm.202204052 -
dc.identifier.wosid 000820805400001 -
dc.identifier.scopusid 2-s2.0-85133405888 -
dc.identifier.bibliographicCitation Advanced Functional Materials, v.32, no.40 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor colloidal electrolytes -
dc.subject.keywordAuthor ionic transport -
dc.subject.keywordAuthor lithium metal batteries -
dc.subject.keywordAuthor mesoscale turbulence -
dc.subject.keywordAuthor nanospinbars -
dc.subject.keywordPlus LITHIUM METAL ANODES -
dc.subject.keywordPlus HIGH-ENERGY -
dc.subject.keywordPlus GROWTH -
dc.subject.keywordPlus BATTERIES -
dc.subject.keywordPlus MECHANISMS -
dc.subject.keywordPlus CHALLENGES -
dc.subject.keywordPlus COMPOSITE -
dc.subject.keywordPlus MOTION -
dc.subject.keywordPlus FLUX -
dc.citation.number 40 -
dc.citation.title Advanced Functional Materials -
dc.citation.volume 32 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE