Cited time in webofscience Cited time in scopus

Customizable, wireless and implantable neural probe design and fabrication via 3D printing

Title
Customizable, wireless and implantable neural probe design and fabrication via 3D printing
Author(s)
Parker, Kyle E.Lee, JuhyunKim, Jenny R.Kawakami, ChinatsuKim, Choong YeonQazi, RazaJang, Kyung-InJeong, Jae-WoongMcCall, Jordan G.
Issued Date
2023-01
Citation
Nature Protocols, v.18, no.1, pp.3 - 21
Type
Article
Keywords
OPTOGENETICS 10 YEARSSOCIAL-ISOLATIONBRAINLIGHTOPTOELECTRONICSPHARMACOLOGYSENSITIVITYCOMMUTATORCIRCUITSDYNAMICS
ISSN
1754-2189
Abstract
This Protocol Extension describes the low-cost production of rapidly customizable optical neural probes for in vivo optogenetics. We detail the use of a 3D printer to fabricate minimally invasive microscale inorganic light-emitting-diode-based neural probes that can control neural circuit activity in freely behaving animals, thus extending the scope of two previously published protocols describing the fabrication and implementation of optoelectronic devices for studying intact neural systems. The 3D-printing fabrication process does not require extensive training and eliminates the need for expensive materials, specialized cleanroom facilities and time-consuming microfabrication techniques typical of conventional manufacturing processes. As a result, the design of the probes can be quickly optimized, on the basis of experimental need, reducing the cost and turnaround for customization. For example, 3D-printed probes can be customized to target multiple brain regions or scaled up for use in large animal models. This protocol comprises three procedures: (1) probe fabrication, (2) wireless module preparation and (3) implantation for in vivo assays. For experienced researchers, neural probe and wireless module fabrication requires similar to 2 d, while implantation should take 30-60 min per animal. Time required for behavioral assays will vary depending on the experimental design and should include at least 5 d of animal handling before implantation of the probe, to familiarize each animal to their handler, thus reducing handling stress that may influence the result of the behavioral assays. The implementation of customized probes improves the flexibility in optogenetic experimental design and increases access to wireless probes for in vivo optogenetic research.
URI
http://hdl.handle.net/20.500.11750/17164
DOI
10.1038/s41596-022-00758-8
Publisher
Nature Publishing Group
Related Researcher
  • 장경인 Jang, Kyung-In
  • Research Interests Extreme mechanics; Stand-alone electronics; Heterogeneous materials; Biocompatible interfaces
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Robotics and Mechatronics Engineering Bio-integrated Electronics Lab 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE