Detail View

DC Field Value Language
dc.contributor.author Park, Hyung-Seok -
dc.contributor.author Moon, Sihoon -
dc.contributor.author Kwak, Jeongho -
dc.contributor.author Park, Kyung-Joon -
dc.date.accessioned 2023-01-11T20:40:15Z -
dc.date.available 2023-01-11T20:40:15Z -
dc.date.created 2022-12-30 -
dc.date.issued 2023-08 -
dc.identifier.issn 1551-3203 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/17403 -
dc.description.abstract Wireless technologies such as WirelessHART are being adopted in industrial wireless sensor-actuator networks (IWSAN), which is required to provide reliable quality of control (QoC). This work focuses on adaptively selecting the best network path for reliable QoC in IWSAN. The main challenge is estimating the time-varying packet delivery ratio (PDR) of each path. The IWSAN path selection problem in a multi-armed bandit (MAB) framework is formulated. A novel algorithm, criticality-aware adaptive path learning (CAPL) is proposed, which determines the criticality of each packet according to the degree of QoC degradation if it is lost. The key novelty of CAPL is that it simultaneously considers the fundamental exploration-exploitation trade-off in MAB and QoC in IWSAN. CAPL uses low-criticality packets for exploration to measure the PDR so that it can minimize the impact of exploration on QoC degradation. CAPL with extensive simulation and empirical studies for DC motor position control are validated. Author -
dc.language English -
dc.publisher IEEE Computer Society -
dc.title CAPL: Criticality-Aware Adaptive Path Learning for Industrial Wireless Sensor-Actuator Networks -
dc.type Article -
dc.identifier.doi 10.1109/TII.2022.3217471 -
dc.identifier.wosid 001030673600053 -
dc.identifier.scopusid 2-s2.0-85144031806 -
dc.identifier.bibliographicCitation Park, Hyung-Seok. (2023-08). CAPL: Criticality-Aware Adaptive Path Learning for Industrial Wireless Sensor-Actuator Networks. IEEE Transactions on Industrial Informatics, 19(8), 9123–9133. doi: 10.1109/TII.2022.3217471 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor Wireless sensor-actuator networks -
dc.subject.keywordAuthor reinforcement learning -
dc.subject.keywordAuthor multi-armed bandit -
dc.subject.keywordAuthor quality of control -
dc.subject.keywordAuthor exploration-exploitation trade-off -
dc.subject.keywordPlus COGNITIVE RADIO -
dc.subject.keywordPlus ALGORITHM -
dc.subject.keywordPlus DESIGN -
dc.citation.endPage 9133 -
dc.citation.number 8 -
dc.citation.startPage 9123 -
dc.citation.title IEEE Transactions on Industrial Informatics -
dc.citation.volume 19 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Automation & Control Systems; Computer Science; Engineering -
dc.relation.journalWebOfScienceCategory Automation & Control Systems; Computer Science, Interdisciplinary Applications; Engineering, Industrial -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

곽정호
Kwak, Jeongho곽정호

Department of Electrical Engineering and Computer Science

read more

Total Views & Downloads