Cited time in webofscience Cited time in scopus

Tailoring light-matter coupling in semiconductor and hybrid-plasmonic nanowires

Tailoring light-matter coupling in semiconductor and hybrid-plasmonic nanowires
Piccione, BrianAspetti, Carlos O.Cho, Chang-HeeAgarwal, Ritesh
DGIST Authors
Cho, Chang-Hee
Issued Date
Article Type
Understanding interactions between light and matter is central to many fields, providing invaluable insights into the nature of matter. In its own right, a greater understanding of light-matter coupling has allowed for the creation of tailored applications, resulting in a variety of devices such as lasers, switches, sensors, modulators, and detectors. Reduction of optical mode volume is crucial to enhancing light-matter coupling strength, and among solid-state systems, self-assembled semiconductor and hybrid-plasmonic nanowires are amenable to creation of highly-confined optical modes. Following development of unique spectroscopic techniques designed for the nanowire morphology, carefully engineered semiconductor nanowire cavities have recently been tailored to enhance light-matter coupling strength in a manner previously seen in optical microcavities. Much smaller mode volumes in tailored hybrid-plasmonic nanowires have recently allowed for similar breakthroughs, resulting in sub-picosecond excited-state lifetimes and exceptionally high radiative rate enhancement. Here, we review literature on light-matter interactions in semiconductor and hybrid-plasmonic monolithic nanowire optical cavities to highlight recent progress made in tailoring light-matter coupling strengths. Beginning with a discussion of relevant concepts from optical physics, we will discuss how our knowledge of light-matter coupling has evolved with our ability to produce ever-shrinking optical mode volumes, shifting focus from bulk materials to optical microcavities, before moving on to recent results obtained from semiconducting nanowires.
Institute of Physics Publishing
Related Researcher
  • 조창희 Cho, Chang-Hee 화학물리학과
  • Research Interests Semiconductor; Nanophotonics; Light-Matter Interaction
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Future Semiconductor Nanophotonics Laboratory 1. Journal Articles


  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.