Cited time in webofscience Cited time in scopus

A high-spin nickel(II) borohydride complex in dehalogenation

Title
A high-spin nickel(II) borohydride complex in dehalogenation
Author(s)
Tak, HyeonwooLee, HyunjooKang, JoongooCho, Jaeheung
Issued Date
2016
Citation
Inorganic Chemistry Frontiers, v.3, no.1, pp.157 - 163
Type
Article
Keywords
1,2-DICHLOROETHANECARBON-DIOXIDECOENZYME-MMETALMETHANOBACTERIUMREDUCTIVE DECHLORINATIONResonance
ISSN
2052-1553
Abstract
A nickel(ii)-borohydride complex bearing a macrocyclic tridentate N-donor ligand, [Ni(Me3-TACN)(BH4)(CH3CN)]+ (Me3-TACN = 1,4,7-trimethyl-1,4,7-triazacyclononane), was prepared, isolated, and characterized by various physicochemical methods, including UV-vis, ESI-MS, IR and X-ray analyses. The structural and spectroscopic characterization clearly shows that the borohydride ligand is bound to the high-spin nickel(ii) center in an η2-manner. Density functional theory calculations provided geometric information of 2, showing that the η2-binding of borohydride to the nickel center is more favorable than the η3-binding mode in CH3CN. The complex is paramagnetic with an effective magnetic moment of 2.9μB consistent with a d8 high-spin system. The reactivity of the high-spin nickel(ii)-borohydride complex was examined in dehalogenation with numerous halocarbons. A kinetic isotope effect value of 1.7 was observed in the dehalogenation of CHCl3 by the nickel(ii)-borohydride complex. Kinetic studies and isotopic labeling experiments implicate that hydride ion or hydrogen atom transfer from the borohydride group is the rate determining step. The positive Hammett ρ value of 1.2, obtained in the reactions of [Ni(Me3-TACN)(BH4)(CH3CN)]+ and para-substituted benzoyl chloride, indicates that the dehalogenation by the nickel(ii)-borohydride species occurs via a nucleophilic reaction. © the Partner Organisations 2016.
URI
http://hdl.handle.net/20.500.11750/2569
DOI
10.1039/c5qi00206k
Publisher
Royal Society of Chemistry
Related Researcher
  • 강준구 Kang, Joongoo
  • Research Interests Computational Materials Science & Materials Design; Nanomaterials for Energy Applications; Theoretical Condensed Matter Physics
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Computational Materials Theory Group 1. Journal Articles
Department of Physics and Chemistry Biomimetic Materials Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE