Cited 4 time in webofscience Cited 4 time in scopus

A high-spin nickel(II) borohydride complex in dehalogenation

Title
A high-spin nickel(II) borohydride complex in dehalogenation
Authors
Tak, HyeonwooLee, HyunjooKang, JoongooCho, Jaeheung
DGIST Authors
Kang, JoongooCho, Jaeheung
Issue Date
2016
Citation
Inorganic Chemistry Frontiers, 3(1), 157-163
Type
Article
Article Type
Article
Keywords
Reductive Dechlorination Carbon-Dioxide Coenzyme-M 1,2-Dichloroethane Methanobacterium
ISSN
2052-1553
Abstract
A nickel(ii)-borohydride complex bearing a macrocyclic tridentate N-donor ligand, [Ni(Me3-TACN)(BH4)(CH3CN)]+ (Me3-TACN = 1,4,7-trimethyl-1,4,7-triazacyclononane), was prepared, isolated, and characterized by various physicochemical methods, including UV-vis, ESI-MS, IR and X-ray analyses. The structural and spectroscopic characterization clearly shows that the borohydride ligand is bound to the high-spin nickel(ii) center in an η2-manner. Density functional theory calculations provided geometric information of 2, showing that the η2-binding of borohydride to the nickel center is more favorable than the η3-binding mode in CH3CN. The complex is paramagnetic with an effective magnetic moment of 2.9μB consistent with a d8 high-spin system. The reactivity of the high-spin nickel(ii)-borohydride complex was examined in dehalogenation with numerous halocarbons. A kinetic isotope effect value of 1.7 was observed in the dehalogenation of CHCl3 by the nickel(ii)-borohydride complex. Kinetic studies and isotopic labeling experiments implicate that hydride ion or hydrogen atom transfer from the borohydride group is the rate determining step. The positive Hammett ρ value of 1.2, obtained in the reactions of [Ni(Me3-TACN)(BH4)(CH3CN)]+ and para-substituted benzoyl chloride, indicates that the dehalogenation by the nickel(ii)-borohydride species occurs via a nucleophilic reaction. © the Partner Organisations 2016.
URI
http://hdl.handle.net/20.500.11750/2569
DOI
10.1039/c5qi00206k
Publisher
Royal Society of Chemistry
Related Researcher
  • Author Kang, Joon Goo Computational Materials Theory Group
  • Research Interests Computational Materials Science & Materials Design; Nanomaterials for Energy Applications; Theoretical Condensed Matter Physics
Files:
There are no files associated with this item.
Collection:
Department of Emerging Materials ScienceComputational Materials Theory Group1. Journal Articles
Department of Emerging Materials ScienceBiomimetic Materials Laboratory1. Journal Articles


qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE