Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Chung, Kyung Min -
dc.contributor.author Park, Hyunhee -
dc.contributor.author Jung, Seonghee -
dc.contributor.author Ha, Shinwon -
dc.contributor.author Yoo, Seung-Jun -
dc.contributor.author Woo, Hanwoong -
dc.contributor.author Lee, Hyang Ju -
dc.contributor.author Kim, Seong Who -
dc.contributor.author Kim, Eun-Kyoung -
dc.contributor.author Moon, Cheil -
dc.contributor.author Yu, Seong-Woon -
dc.date.available 2017-07-11T04:41:51Z -
dc.date.created 2017-04-10 -
dc.date.issued 2015-10 -
dc.identifier.issn 1066-5099 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2586 -
dc.description.abstract Programmed cell death (PCD) has significant effects on the function of neural stem cells (NSCs) during brain development and degeneration. We have previously reported that adult rat hippocampal neural stem (HCN) cells underwent autophagic cell death (ACD) rather than apoptosis following insulin withdrawal despite their intact apoptotic capabilities. Here, we report a switch in the mode of cell death in HCN cells with calpain as a critical determinant. In HCN cells, calpain 1 expression was barely detectable while calpain 2 was predominant. Inhibition of calpain in insulin-deprived HCN cells further augmented ACD. In contrast, expression of calpain 1 switched ACD to apoptosis. The proteasome inhibitor lactacystin blocked calpain 2 degradation and elevated the intracellular Ca2+ concentration. In combination, these effects potentiated calpain activity and converted the mode of cell death to apoptosis. Our results indicate that low calpain activity, due to absence of calpain 1 and degradation of calpain 2, results in a preference for ACD over apoptosis in insulin-deprived HCN cells. On the other hand, conditions leading to high calpain activity completely switch the mode of cell death to apoptosis. This is the first report on the PCD mode switching mechanism in NSCs. The dynamic change in calpain activity through the proteasome-mediated modulation of the calpain and intracellular Ca2+ levels may be the critical contributor to the demise of NSCs. Our findings provide a novel insight into the complex mechanisms interconnecting autophagy and apoptosis and their roles in the regulation of NSC death. © 2015 AlphaMed Press. -
dc.publisher Wiley Blackwell -
dc.title Calpain Determines the Propensity of Adult Hippocampal Neural Stem Cells to Autophagic Cell Death Following Insulin Withdrawal -
dc.type Article -
dc.identifier.doi 10.1002/stem.2082 -
dc.identifier.scopusid 2-s2.0-84942329160 -
dc.identifier.bibliographicCitation Stem Cells, v.33, no.10, pp.3052 - 3064 -
dc.subject.keywordAuthor Adult neural stem cells -
dc.subject.keywordAuthor Autophagic cell death -
dc.subject.keywordAuthor Apoptosis -
dc.subject.keywordAuthor Insulin withdrawal -
dc.subject.keywordAuthor Calpain -
dc.subject.keywordAuthor Proteasome -
dc.subject.keywordPlus ACTIVATION -
dc.subject.keywordPlus Adult Neural Stem Cells -
dc.subject.keywordPlus Adult Stem Cell -
dc.subject.keywordPlus Adult Stem Cells -
dc.subject.keywordPlus ALZHEIMERS-DISEASE -
dc.subject.keywordPlus Animal -
dc.subject.keywordPlus Animals -
dc.subject.keywordPlus APOPTOSIS -
dc.subject.keywordPlus Article -
dc.subject.keywordPlus Autophagic Cell Death -
dc.subject.keywordPlus Autophagy -
dc.subject.keywordPlus Brain -
dc.subject.keywordPlus Calcium Cell Level -
dc.subject.keywordPlus Calcium Ion -
dc.subject.keywordPlus Calpain -
dc.subject.keywordPlus Calpain 1 -
dc.subject.keywordPlus Calpain 2 -
dc.subject.keywordPlus Controlled Study -
dc.subject.keywordPlus Cytology -
dc.subject.keywordPlus DEGRADATION -
dc.subject.keywordPlus Drug Effects -
dc.subject.keywordPlus Flow Cytometry -
dc.subject.keywordPlus Gene Expression Regulation -
dc.subject.keywordPlus Gene Expression Regulation, Developmental -
dc.subject.keywordPlus Genetics -
dc.subject.keywordPlus GLANDS -
dc.subject.keywordPlus Growth, Development and Aging -
dc.subject.keywordPlus Hippocampal Neuronal Culture -
dc.subject.keywordPlus Hippocampus -
dc.subject.keywordPlus Human -
dc.subject.keywordPlus Human Cell -
dc.subject.keywordPlus INHIBITORS -
dc.subject.keywordPlus Insulin -
dc.subject.keywordPlus Insulin Withdrawal -
dc.subject.keywordPlus MECHANISMS -
dc.subject.keywordPlus Metabolism -
dc.subject.keywordPlus Neural Stem Cell -
dc.subject.keywordPlus Neural Stem Cells -
dc.subject.keywordPlus Proteasome -
dc.subject.keywordPlus Protein Degradation -
dc.subject.keywordPlus Protein Expression -
dc.subject.keywordPlus Rat -
dc.subject.keywordPlus Rats -
dc.subject.keywordPlus Regulatory Mechanism -
dc.subject.keywordPlus RESISTANCE -
dc.subject.keywordPlus Reverse Transcription Polymerase Chain Reaction -
dc.subject.keywordPlus UBIQUITIN-PROTEASOME System -
dc.subject.keywordPlus Western Blotting -
dc.citation.endPage 3064 -
dc.citation.number 10 -
dc.citation.startPage 3052 -
dc.citation.title Stem Cells -
dc.citation.volume 33 -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE