Cited time in webofscience Cited time in scopus

Arabidopsis Glutamate Receptor Homolog3.5 Modulates Cytosolic Ca2+ Level to Counteract Effect of Abscisic Acid in Seed Germination

Arabidopsis Glutamate Receptor Homolog3.5 Modulates Cytosolic Ca2+ Level to Counteract Effect of Abscisic Acid in Seed Germination
Kong, DD[Kong, Dongdong]Ju, CL[Ju, Chuanli]Parihar, A[Parihar, Aisha]Kim, S[Kim, So]Cho, D[Cho, Daeshik]Kwak, JM[Kwak, June M.]
DGIST Authors
Kwak, JM[Kwak, June M.]
Issued Date
Article Type
ArabidopsisArabidopsis Thaliana
Seed germination is a critical step in a plant’s life cycle that allows successful propagation and is therefore strictly controlled by endogenous and environmental signals. However, the molecular mechanisms underlying germination control remain elusive. Here, we report that the Arabidopsis (Arabidopsis thaliana) glutamate receptor homolog3.5 (AtGLR3.5) is predominantly expressed in germinating seeds and increases cytosolic Ca2+ concentration that counteracts the effect of abscisic acid (ABA) to promote germination. Repression of AtGLR3.5 impairs cytosolic Ca2+ concentration elevation, significantly delays germination, and enhances ABA sensitivity in seeds, whereas overexpression of AtGLR3.5 results in earlier germination and reduced seed sensitivity to ABA. Furthermore, we show that Ca2+ suppresses the expression of ABSCISIC ACID INSENSITIVE4 (ABI4), a key transcription factor involved in ABA response in seeds, and that ABI4 plays a fundamental role in modulation of Ca2+-dependent germination. Taken together, our results provide molecular genetic evidence that AtGLR3.5-mediated Ca2+ influx stimulates seed germination by antagonizing the inhibitory effects of ABA through suppression of ABI4. These findings establish, to our knowledge, a new and pivotal role of the plant glutamate receptor homolog and Ca2+ signaling in germination control and uncover the orchestrated modulation of the AtGLR3.5- mediated Ca2+ signal and ABA signaling via ABI4 to fine-tune the crucial developmental process, germination, in Arabidopsis. © 2014 American Society of Plant Biologists. All Rights Reserved.
American Society of Plant Biologists
Related Researcher
  • 곽준명 Kwak, June Myoung 뉴바이올로지학과
  • Research Interests Calcium Signaling; ABA;ROS Signaling; plant development; Development of Abscission; Culluar Features; Signaling network; Environmental Regulation
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of New Biology Lab of Cell Signaling and Development 1. Journal Articles


  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.