Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Park, Ji-Yoon -
dc.contributor.author Yeo, Seungmin -
dc.contributor.author Cheon, Taehoon -
dc.contributor.author Kim, Soo-Hyun -
dc.contributor.author Kim, Min-Kyu -
dc.contributor.author Kim, Hyungjun -
dc.contributor.author Hong, Tae Eun -
dc.contributor.author Lee, Do-Joong -
dc.date.available 2017-07-11T06:15:55Z -
dc.date.created 2017-04-10 -
dc.date.issued 2014-10-15 -
dc.identifier.issn 0925-8388 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/3020 -
dc.description.abstract Highly conformal and conductive RuO2 thin films were deposited without nucleation delay using atomic layer deposition (ALD) by zero-valent metallorganic precursor, (ethylbenzyl)(1,3-cyclohexadienyl)Ru(0) (EBCHDRu, C14H18Ru) and molecular oxygen (O2) as a precursor and reactant, respectively. RuO2 thin films could be successfully prepared by controlling the process parameters, such as a reactant flow rate, a reactant pulsing time, a precursor pulsing time, and a deposition temperature. X-ray diffractometry, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry analysis revealed that the formation of a RuO2 phase became favorable with increasing both the reactant flow rate and the pulsing time and with decreasing the precursor pulsing time and the deposition temperature. With the optimized pulsing conditions, the RuO 2 film deposited at 225 °C had a tetragonal structure and exhibited excellent properties such as the low resistivity of 118 μΩ-cm, the high density of 6.85 g/cm3 close to the bulk value, and the negligible roughness of 0.33 nm. The growth rate of ALD-RuO 2 was as high as 0.186 nm/cycle on the SiO2 substrate and the number of incubation cycles was negligible as 2. The film showed excellent step coverage of ∼100% onto 25-nm-width trench structures with an aspect ratio of 4.5. The ALD-RuO2 was highly stable up to annealing at 700 °C in both O2 and N2 ambient. Finally, the ALD-RuO2 film was evaluated as a bottom electrode of a metal-insulator-metal capacitor with a high-k (dielectric constant) ALD-TiO 2 dielectric. The dielectric constant of ALD-TiO2 was confirmed to be as high as ∼68. This extremely high dielectric constant was attributed to the formation of a rutile-structured TiO2 film on top of the ALD-RuO2 bottom electrode, as evidenced by high-resolution transmission electron microscopy analysis. © 2014 Elsevier B.V. All rights reserved. -
dc.publisher Elsevier -
dc.title Growth of highly conformal ruthenium-oxide thin films with enhanced nucleation by atomic layer deposition -
dc.type Article -
dc.identifier.doi 10.1016/j.jallcom.2014.04.186 -
dc.identifier.scopusid 2-s2.0-84901982681 -
dc.identifier.bibliographicCitation Journal of Alloys and Compounds, v.610, pp.529 - 539 -
dc.subject.keywordAuthor Atomic layer deposition -
dc.subject.keywordAuthor Ruthenium oxide -
dc.subject.keywordAuthor Metallorganic precursor -
dc.subject.keywordAuthor Nucleation -
dc.subject.keywordAuthor Bottom electrode -
dc.subject.keywordAuthor Capacitor -
dc.subject.keywordPlus TIO2 FILMS -
dc.subject.keywordPlus CAPACITORS -
dc.subject.keywordPlus RUO2 -
dc.subject.keywordPlus MEMORY -
dc.subject.keywordPlus OXYGEN -
dc.subject.keywordPlus ELECTRODES -
dc.citation.endPage 539 -
dc.citation.startPage 529 -
dc.citation.title Journal of Alloys and Compounds -
dc.citation.volume 610 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
ETC 1. Journal Articles
Center for Core Research Facilities 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE