Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Panwar, Varij -
dc.contributor.author Gill, Fateh Singh -
dc.contributor.author Rathi, Vikas -
dc.contributor.author Tewari, V. K. -
dc.contributor.author Mehra, R. M. -
dc.contributor.author Park, Jong-Oh -
dc.contributor.author Park, Sukho -
dc.date.available 2017-08-10T08:11:46Z -
dc.date.created 2017-08-09 -
dc.date.issued 2017-06-01 -
dc.identifier.issn 0254-0584 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/4158 -
dc.description.abstract The fabrication of strong conducting composite sheets (CCSs) using a simple technique with cost-effective materials is desirable for capacitor, decoupling capacitor, and electromagnetic interference (EMI) shielding applications. Here, we used cost-effective graphite flakes (GFs) as a conducting filler and amorphous poly (styrene-co-acrylonitrile) (PSAN) as an insulating polymer to fabricate a CCS via a simple mechanical mixing and hot compression molding process in 2.5h, with the aim to save time and avoid the use of toxic reagents, which are generally used in chemical methods. In the present method, the GFs are connected in diffusively adhere polymer matrix, controlled by temperature and pressure that generate the conduction in the CCSs. The resulting PSAN/GF CCSs were characterized by using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and hardness tests. The GFs penetrated the interfacial region of PSAN, thus improving the thermistor and dielectric properties (dielectric constant, AC conductivity, and dissipation factor) of the PSAN/GF CCSs. Furthermore, the PSAN/GF CCSs showed enhanced hardness and EMI shielding effectiveness (SE) properties in the X-band frequency range (8.5–12.5GHz). The percolation theory was implemented to DC and AC conductivity. To detect the transition of the dielectric properties, the dielectric constant of the CCSs was analyzed with increasing volume fraction of GFs in the radio frequency region. The improved dielectric constant, AC conductivity, and dissipation factor of the PSAN/GF CCS, indicated a significant improvement in their EMI shielding properties in the X-band frequency range, which were measured using the waveguide method. The ac conductivity of PSAN/GF CCS shows stable behavior in the higher frequency ranges. The EMISE of PSAN/GF CCS were found to increase with increasing GF content due to the absorbance mechanism. © 2017 Elsevier B.V. -
dc.publisher Elsevier Ltd -
dc.title Fabrication of conducting composite sheets using cost-effective graphite flakes and amorphous styrene acrylonitrile for enhanced thermistor, dielectric, and electromagnetic interference shielding properties -
dc.type Article -
dc.identifier.doi 10.1016/j.matchemphys.2017.02.050 -
dc.identifier.scopusid 2-s2.0-85016146659 -
dc.identifier.bibliographicCitation Materials Chemistry and Physics, v.193, pp.329 - 338 -
dc.subject.keywordAuthor Capacitor -
dc.subject.keywordAuthor Decoupling capacitor -
dc.subject.keywordAuthor Electromagnetic interference shielding -
dc.subject.keywordAuthor Amorphous polymer -
dc.subject.keywordAuthor Thermistor -
dc.subject.keywordPlus Amorphous Polymer -
dc.subject.keywordPlus Amorphous Polymers -
dc.subject.keywordPlus Behavior -
dc.subject.keywordPlus Capacitor -
dc.subject.keywordPlus Capacitors -
dc.subject.keywordPlus Carbon Nanotubes -
dc.subject.keywordPlus Compression Molding -
dc.subject.keywordPlus Cost Effectiveness -
dc.subject.keywordPlus Costs -
dc.subject.keywordPlus Decoupling Capacitor -
dc.subject.keywordPlus Dielectric Properties -
dc.subject.keywordPlus Differential Scanning Calorimetry -
dc.subject.keywordPlus Electrochemical Energy Storage -
dc.subject.keywordPlus Electromagnetic Interference Shielding -
dc.subject.keywordPlus Electromagnetic Pulse -
dc.subject.keywordPlus Electromagnetic Shielding -
dc.subject.keywordPlus Electromagnetic Wave Interference -
dc.subject.keywordPlus EMI Shielding Effectiveness -
dc.subject.keywordPlus EMI Shielding Properties -
dc.subject.keywordPlus Filled Polymers -
dc.subject.keywordPlus Graphene -
dc.subject.keywordPlus Graphite -
dc.subject.keywordPlus Hardness -
dc.subject.keywordPlus Nanoparticles -
dc.subject.keywordPlus Oxide -
dc.subject.keywordPlus Percolation Threshold -
dc.subject.keywordPlus Poly(Styrene Co Acrylonitrile) -
dc.subject.keywordPlus Polymer Blends -
dc.subject.keywordPlus Polymer Composites -
dc.subject.keywordPlus Polyurethane Nanocomposites -
dc.subject.keywordPlus Scanning Electron Microscopy (SEM) -
dc.subject.keywordPlus Shielding -
dc.subject.keywordPlus Signal Interference -
dc.subject.keywordPlus Solvents -
dc.subject.keywordPlus Styrene -
dc.subject.keywordPlus Temperature and Pressures -
dc.subject.keywordPlus Thermistor -
dc.subject.keywordPlus Thermistors -
dc.subject.keywordPlus Thermogravimetric Analysis -
dc.subject.keywordPlus X Band Frequency Range -
dc.citation.endPage 338 -
dc.citation.startPage 329 -
dc.citation.title Materials Chemistry and Physics -
dc.citation.volume 193 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Robotics and Mechatronics Engineering Multiscale Biomedical Robotics Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE