Detail View

A synergistic effect of Co and CeO2 in nitrogen-doped carbon nanostructure for the enhanced oxygen electrode activity and stability
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Sivanantham, Arumugam -
dc.contributor.author Ganesan, Pandian -
dc.contributor.author Shanmugam, Sangaraju -
dc.date.available 2017-10-06T08:23:14Z -
dc.date.created 2017-10-06 -
dc.date.issued 2018-12 -
dc.identifier.issn 0926-3373 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/4568 -
dc.description.abstract The development of efficient and durable non-precious cathode catalyst have been received the great interest to replace the commercial noble catalysts, thereby minimizing the overall cost of polymer electrolyte membrane fuel cells. We describe the synthesis of self-redox CeO2 supported Co in nitrogen-doped carbon nanorods (Co-CeO2/N-CNR) by the electro-spun method, and introduced as an enhanced bifunctional catalyst for oxygen reduction (ORR) as well as evolution (OER) reactions by the synergistic effect of oxygen buffer CeO2 with metallic Co. Systematic structural and optical studies confirm the formation and uniform distribution of CeO2 and Co particles in N-CNR. The X-ray photoelectron spectroscopy analysis of Co-CeO2/N-CNR reveals that the presence of Co2+ and multiple valence states of ceria (Ce4+ and Ce3+). The shift in binding energies of Co2+ and Ce3+ states confirm the possible interaction for the cooperative effect of ceria and cobalt during ORR and OER, and electrode stability improvement as well. The Co-CeO2/N-CNR catalyst shows the enhanced oxygen electrode potential of 0.84V (versus reversible hydrogen electrode), which is 100 and 196mV lower than Co/N-CNR and Pt/C, respectively, including the improved stability. © 2017 Elsevier B.V. -
dc.language English -
dc.publisher Elsevier B.V. -
dc.title A synergistic effect of Co and CeO2 in nitrogen-doped carbon nanostructure for the enhanced oxygen electrode activity and stability -
dc.type Article -
dc.identifier.doi 10.1016/j.apcatb.2017.08.063 -
dc.identifier.wosid 000442973700117 -
dc.identifier.scopusid 2-s2.0-85029210038 -
dc.identifier.bibliographicCitation Sivanantham, Arumugam. (2018-12). A synergistic effect of Co and CeO2 in nitrogen-doped carbon nanostructure for the enhanced oxygen electrode activity and stability. Applied Catalysis B: Environmental, 237, 1148–1159. doi: 10.1016/j.apcatb.2017.08.063 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Oxygen reduction -
dc.subject.keywordAuthor Cobalt-ceria -
dc.subject.keywordAuthor Carbon nanorod -
dc.subject.keywordAuthor Cooperative effect -
dc.subject.keywordAuthor Oxygen evolution -
dc.subject.keywordPlus EFFICIENT BIFUNCTIONAL ELECTROCATALYST -
dc.subject.keywordPlus MEMBRANE FUEL-CELLS -
dc.subject.keywordPlus HIGH-SURFACE-AREA -
dc.subject.keywordPlus REDUCTION CATALYSTS -
dc.subject.keywordPlus EVOLUTION REACTIONS -
dc.subject.keywordPlus SUPPORTED CATALYSTS -
dc.subject.keywordPlus LITHIUM-O-2 BATTERY -
dc.subject.keywordPlus NANOWIRE ARRAYS -
dc.subject.keywordPlus WATER OXIDATION -
dc.subject.keywordPlus NANOPARTICLES -
dc.citation.endPage 1159 -
dc.citation.startPage 1148 -
dc.citation.title Applied Catalysis B: Environmental -
dc.citation.volume 237 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Engineering -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Engineering, Environmental; Engineering, Chemical -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

상가라쥬샨무감
Shanmugam, Sangaraju상가라쥬샨무감

Department of Energy Science and Engineering

read more

Total Views & Downloads