Detail View

Synthesis and characterization of highly durable hydrocarbon-based composite membrane for zinc-bromine redox flow battery
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Synthesis and characterization of highly durable hydrocarbon-based composite membrane for zinc-bromine redox flow battery
Issued Date
2023-04
Citation
Gikunoo, Edzordzi Kwame. (2023-04). Synthesis and characterization of highly durable hydrocarbon-based composite membrane for zinc-bromine redox flow battery. Journal of Power Sources, 563. doi: 10.1016/j.jpowsour.2023.232821
Type
Article
Author Keywords
SPEEKp-CT/CNFZBFB performanceBromine stabilityDurability
Keywords
PEROVSKITECARBONMECHANISMSIONS
ISSN
0378-7753
Abstract
Low-cost, durable, and high-performance membranes are urgent requirements for zinc bromine redox flow battery (ZBFB) applications. Sulfonated poly (ether ether ketone), SPEEK is a low-cost, ion-exchange membrane with excellent ionic conductivity, but its backbone is susceptible to the harsh bromine environment. Herein, the successful incorporation of a multifunctional nanofiller, perovskite-structured cerium titanate nanoparticles dispersed on smooth carbon nanofibers (p-CT/CNF) with varying carbon content into the polymer matrix protects the SPEEK backbone, reduces the crossover of active species and improves the selectivity of the composite membrane. At high current density of 100 mA cm−2, the SP-p-CT350 membrane in ZBFB shows an energy efficiency of 73.34% compared to pristine SPEEK and SP-p-CT320 with 70.32 and 69.71%, respectively. Interestingly, the excellent dispersion of the nanofiller notably reduces the self-discharge rate of SP-p-CT350, retaining the OCV at 1.70 V for 117 h which is 1.86 and 1.75 times greater than pristine SPEEK and SP-p-CT320. Furthermore, with the effect of loading to determine the durability of the SP-p-CT350 membrane, SP-p-CT350 with a nanofiller loading of 0.5 wt% demonstrates stable battery performance across 500 cycles at a current density of 40 mA cm−2 with an outstanding energy efficiency of 81.13%. © 2023 Elsevier B.V.
URI
http://hdl.handle.net/20.500.11750/46129
DOI
10.1016/j.jpowsour.2023.232821
Publisher
Elsevier B.V.
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

상가라쥬샨무감
Shanmugam, Sangaraju상가라쥬샨무감

Department of Energy Science and Engineering

read more

Total Views & Downloads