Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Hiragond, Chaitanya Balappa -
dc.contributor.author Biswas, Sohag -
dc.contributor.author Powar, Niket Suresh -
dc.contributor.author Lee, Junho -
dc.contributor.author Gong, Eunhee -
dc.contributor.author Kim, Hwapyong -
dc.contributor.author Kim, Hong Soo -
dc.contributor.author Jung, Jin‐Woo -
dc.contributor.author Cho, Chang-Hee -
dc.contributor.author Wong, Bryan M. -
dc.contributor.author In, Su-Il -
dc.date.accessioned 2023-07-27T15:40:16Z -
dc.date.available 2023-07-27T15:40:16Z -
dc.date.created 2023-07-27 -
dc.date.issued 2024-01 -
dc.identifier.issn 2637-9368 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/46289 -
dc.description.abstract Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO2 reduction to solar fuels. A surface-modified Ag@Ru-P25 photocatalyst with H2O2 treatment was designed in this study to convert CO2 and H2O vapor into highly selective CH4. Ru doping followed by Ag nanoparticles (NPs) cocatalyst deposition on P25 (TiO2) enhances visible light absorption and charge separation, whereas H2O2 treatment modifies the surface of the photocatalyst with hydroxyl (–OH) groups and promotes CO2 adsorption. High-resonance transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray absorption near-edge structure, and extended X-ray absorption fine structure techniques were used to analyze the surface and chemical composition of the photocatalyst, while thermogravimetric analysis, CO2 adsorption isotherm, and temperature programmed desorption study were performed to examine the significance of H2O2 treatment in increasing CO2 reduction activity. The optimized Ag1.0@Ru1.0-P25 photocatalyst performed excellent CO2 reduction activity into CO, CH4, and C2H6 with a ~95% selectivity of CH4, where the activity was ~135 times higher than that of pristine TiO2 (P25). For the first time, this work explored the effect of H2O2 treatment on the photocatalyst that dramatically increases CO2 reduction activity. © 2023 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd. -
dc.language English -
dc.publisher Wiley -
dc.title Surface-modified Ag@Ru-P25 for photocatalytic CO2 conversion with high selectivity over CH4 formation at the solid–gas interface -
dc.type Article -
dc.identifier.doi 10.1002/cey2.386 -
dc.identifier.wosid 001025926500001 -
dc.identifier.scopusid 2-s2.0-85165100563 -
dc.identifier.bibliographicCitation Carbon Energy, v.6, no.1 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor gas‐phase CO2reduction -
dc.subject.keywordAuthor H2O2treatment -
dc.subject.keywordAuthor plasmonic nanoparticles -
dc.subject.keywordAuthor solar fuel photocatalyst -
dc.subject.keywordAuthor surface modification -
dc.subject.keywordPlus TITANIUM-DIOXIDE -
dc.subject.keywordPlus TIO2 -
dc.subject.keywordPlus REDUCTION -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus DECOMPOSITION -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus METHANE -
dc.subject.keywordPlus H2O2 -
dc.subject.keywordPlus CATALYST -
dc.subject.keywordPlus PHOTOREDUCTION -
dc.citation.number 1 -
dc.citation.title Carbon Energy -
dc.citation.volume 6 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE