Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lee, Hyuntae -
dc.contributor.author An, Hyeongguk -
dc.contributor.author Chang, Hongjun -
dc.contributor.author Lee, Mingyu -
dc.contributor.author Park, Seungsoo -
dc.contributor.author Lee, Soyeon -
dc.contributor.author Kang, Jiwoong -
dc.contributor.author Byon, Seungwoo -
dc.contributor.author Koo, Bonhyeop -
dc.contributor.author Lee, Hochun -
dc.contributor.author Lee, Yong Min -
dc.contributor.author Moon, Janghyuk -
dc.contributor.author Chae, Sujong -
dc.contributor.author Lee, Hongkyung -
dc.date.accessioned 2023-12-13T15:10:20Z -
dc.date.available 2023-12-13T15:10:20Z -
dc.date.created 2023-10-25 -
dc.date.issued 2023-11 -
dc.identifier.issn 2405-8297 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/46655 -
dc.description.abstract Amidst the surging demand for battery-powered automobiles, it is crucial to tackle the safety risks of Li plating triggered by high cell polarization to achieve extremely fast charging (XFC) of Li-ion batteries. This study explores the impact of Li+ desolvation and solid-electrolyte interphase (SEI) chemistry on cell polarizations by utilizing linear carbonate (LC)-based, LiPF6-concentrated electrolytes (LPCEs). In the LC family, dimethyl carbonate (DMC) is thermodynamically preferred to facilitate desolvation kinetics, thereby lowering the charge-transfer barrier at the graphite anode. For effective graphite passivation and faster Li+ diffusion crossing the SEI, fluoroethylene carbonate (FEC) can help build up a thin and fluorinated SEI and reinforce the XFC cycling stability of graphite||NMC622 full cells (3.0 mAh cm−2; N/P ratio = 1.1), exhibiting 94.3% capacity retention over 500 cycles under a 10-min charging condition. The excellent XFC performance is practically validated using a 1.2-Ah pouch cell, demonstrating three times higher capacity retention over 200 cycles while suppressing Li plating-triggered cell swelling compared to conventional electrolytes. Unraveling the cell polarization governed by electrolyte chemistry provides valuable insights regarding future electrolyte designs for improving the XFC capabilities of Li-ion batteries. © 2023 Elsevier B.V. -
dc.language English -
dc.publisher Elsevier BV -
dc.title Boosting interfacial kinetics in extremely fast rechargeable Li-ion batteries with linear carbonate-based, LiPF6-concentrated electrolyte -
dc.type Article -
dc.identifier.doi 10.1016/j.ensm.2023.102995 -
dc.identifier.wosid 001091574800001 -
dc.identifier.scopusid 2-s2.0-85173282996 -
dc.identifier.bibliographicCitation Energy Storage Materials, v.63 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Desolvation -
dc.subject.keywordAuthor Fast charging -
dc.subject.keywordAuthor Interfacial kinetics -
dc.subject.keywordAuthor High concentration -
dc.subject.keywordAuthor Linear carbonates -
dc.subject.keywordAuthor Lithium-ion batteries -
dc.subject.keywordPlus LITHIUM-ION -
dc.subject.keywordPlus INTERPHASE -
dc.subject.keywordPlus ENABLES -
dc.subject.keywordPlus ENERGY -
dc.subject.keywordPlus CELLS -
dc.subject.keywordPlus VC -
dc.citation.title Energy Storage Materials -
dc.citation.volume 63 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry; Physical; Nanoscience & Nanotechnology; Materials Science; Multidisciplinary -
dc.type.docType Article -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE