Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lee, Mingyu -
dc.contributor.author Shin, Yewon -
dc.contributor.author Chang, Hongjun -
dc.contributor.author Jin, Dahee -
dc.contributor.author Lee, Hyuntae -
dc.contributor.author Lim, Minhong -
dc.contributor.author Seo, Jiyeon -
dc.contributor.author Band, Tino -
dc.contributor.author Kaufmann, Kai -
dc.contributor.author Moon, Janghyuk -
dc.contributor.author Lee, Yong Min -
dc.contributor.author Lee, Hongkyung -
dc.date.accessioned 2023-12-13T15:10:20Z -
dc.date.available 2023-12-13T15:10:20Z -
dc.date.created 2023-09-22 -
dc.date.issued 2023-09 -
dc.identifier.issn 2366-9608 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/46656 -
dc.description.abstract With the growing popularity of Li-ion batteries in large-scale applications, building a safer battery has become a common goal of the battery community. Although the small errors inside the cells trigger catastrophic failures, tracing them and distinguishing cell failure modes without knowledge of cell anatomy can be challenging using conventional methods. In this study, a real-time, non-invasive magnetic field imaging (MFI) analysis that can signal the battery current-induced magnetic field and visualize the current flow within Li-ion cells is developed. A high-speed, spatially resolved MFI scan is used to derive the current distribution pattern from cells with different tab positions at a current load. Current maps are collected to determine possible cell failures using fault-simulated batteries that intentionally possess manufacturing faults such as lead-tab connection failures, electrode misalignment, and stacking faults (electrode folding). A modified MFI analysis exploiting the magnetic field interference with the countercurrent-carrying plate enables the direct identification of defect spots where abnormal current flow occurs within the pouch cells. © 2023 Wiley-VCH GmbH. -
dc.language English -
dc.publisher Wiley -
dc.title Diagnosis of Current Flow Patterns Inside Fault-Simulated Li-Ion Batteries via Non-Invasive, In Operando Magnetic Field Imaging -
dc.type Article -
dc.identifier.doi 10.1002/smtd.202300748 -
dc.identifier.wosid 001067132700001 -
dc.identifier.scopusid 2-s2.0-85170834470 -
dc.identifier.bibliographicCitation Small Methods, v.7, no.11 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor battery diagnosis -
dc.subject.keywordAuthor battery faults -
dc.subject.keywordAuthor current distribution -
dc.subject.keywordAuthor fault-simulated batteries -
dc.subject.keywordAuthor in operando -
dc.subject.keywordAuthor Li-ion batteries -
dc.subject.keywordAuthor magnetic-field imaging -
dc.subject.keywordPlus LITHIUM -
dc.subject.keywordPlus CELL -
dc.subject.keywordPlus DESIGN -
dc.subject.keywordPlus CHARGE -
dc.subject.keywordPlus BEHAVIOR -
dc.subject.keywordPlus DEFECTS -
dc.subject.keywordPlus CIRCUIT -
dc.subject.keywordPlus GROWTH -
dc.subject.keywordPlus STATE -
dc.citation.number 11 -
dc.citation.title Small Methods -
dc.citation.volume 7 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE