Detail View

Bidirectional RNN-based Few Shot Learning for 3D Medical Image Segmentation
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Kim, Soopil -
dc.contributor.author An, Sion -
dc.contributor.author Chikontwe, Philip -
dc.contributor.author Park, Sang Hyun -
dc.date.accessioned 2023-12-26T19:12:21Z -
dc.date.available 2023-12-26T19:12:21Z -
dc.date.created 2021-01-14 -
dc.date.issued 2021-02-02 -
dc.identifier.isbn 9781577358664 -
dc.identifier.issn 2374-3468 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/46948 -
dc.description.abstract Segmentation of organs of interest in 3D medical images is necessary for accurate diagnosis and longitudinal studies. Though recent advances using deep learning have shown success for many segmentation tasks, large datasets are required for high performance and the annotation process is both time consuming and labor intensive. In this paper, we propose a 3D few shot segmentation framework for accurate organ segmentation using limited training samples of the target organ annotation. To achieve this, a U-Net like network is designed to predict segmentation by learning the relationship between 2D slices of support data and a query image, including a bidirectional gated recurrent unit (GRU) that learns consistency of encoded features between adjacent slices. Also, we introduce a transfer learning method to adapt the characteristics of the target image and organ by updating the model before testing with arbitrary support and query data sampled from the support data. We evaluate our proposed model using three 3D CT datasets with annotations of different organs. Our model yielded significantly improved performance over state-of-theart few shot segmentation models and was comparable to a fully supervised model trained with more target training data.1© 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved -
dc.language English -
dc.publisher Association for the Advancement of Artificial Intelligence(AAAI) -
dc.relation.ispartof Proceedings of the AAAI Conference on Artificial Intelligence -
dc.title Bidirectional RNN-based Few Shot Learning for 3D Medical Image Segmentation -
dc.type Conference Paper -
dc.identifier.wosid 000680423501100 -
dc.identifier.scopusid 2-s2.0-85130043028 -
dc.identifier.bibliographicCitation Kim, Soopil. (2021-02-02). Bidirectional RNN-based Few Shot Learning for 3D Medical Image Segmentation. AAAI Conference on Artificial Intelligence, 1808–1816. -
dc.identifier.url https://ojs.aaai.org/index.php/AAAI/article/view/16275 -
dc.citation.conferenceDate 2021-02-02 -
dc.citation.conferencePlace US -
dc.citation.conferencePlace Virtual Conference -
dc.citation.endPage 1816 -
dc.citation.startPage 1808 -
dc.citation.title AAAI Conference on Artificial Intelligence -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

김수필
Kim, Soopil김수필

Division of Intelligent Robotics

read more

Total Views & Downloads